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Persistent Homology?
Shmuel Weinberger

In memory of my friend, Partha Niyogi (1967–2010)

Consider the art of Seurat or a piece of old
newsprint. The eye, or the brain, performs the
marvelous task of taking the sense data of individ-
ual points and assembling them into a coherent
image of a continuum—it infers the continuous
from the discrete.

Difficult issues of a similar sort occur in many
problemsof data analysis. One might have samples
that are chosen nonuniformly (e.g., not filling a
grid), and, moreover, one is constantly plagued by
problems of noise—the data can be corrupted in
various ways.

Pure mathematicians have problems of this sort
as well. One is often interested in inferring proper-
ties of an enveloping space from a discrete object
within it or, in reverse, seeking commonalities of
all the discrete subobjects of a given continuous
one. To give one example, this theme is a central
one in geometric group theory, in which a typical
problem, going back to Furstenberg and Mostow,
asks to reconstruct a connected Lie group from a
lattice in it.

And, ubiquitously in analysis, one often tries to
get information about a function from approxima-
tions to it. For instance, any function uniformly
close to z → zn on the complex plane necessarily
has at least n roots (with multiplicity).

Because topology is essentially a qualitative
field, it is perhaps not surprising that there has
been a development of some common topological
technology for these problems. Needless to say,
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the deepest aspects of these problems all have

the idiosyncrasies of their particular application

domains. The focus here is on what is common to

them.

For simplicity in what follows, we will take all

homology groups to have coefficients in a field.

Definition. Suppose that we have X = {Xr |r ∈

R} a nested sequence of spaces (satisfying mild

technical conditions), parameterized by the real

numbers. We define the kth persistent homology

PHk(X) by the formula:

PHk(X) = ΠHk(Xr ).

The product on the right is an awful object: for-

mally it is an uncountable dimensional vector

space, but there is a reasonable way to make

sense of this, taking into account the fact that
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the inclusion Xr ⊂ Xs for r < s induces a map

Hk(Xr )→ Hk(Xs).

If one considers an element ofHk(Xr), then one

can follow it along “further in time” to larger s’s

and watch whether or not it dies. If it dies, there is

a smallest (or actually infimal) s at which it does.

If Hk(Xr) is finite dimensional, then it is possible

to give it a basis so that every element in the basis

has a well-defined moment of death and a sum of

basis elements dies inHk(Xs) if and only if each of

the basis elements with nonzero coefficients in its

description dies in Hk(Xs). (This is a consequence

of elementary linear algebraic considerations.)

A concrete example is given by a positive real

valued function f : Z → R+; we can think of

f−1[0, r ] as an approximation to Z . From this

point of view, there are some homology classes

that are “born immediately” at r = 0, i.e., are

in the image of Hk(f
−1{0}), but others are born

somewhat later. Other classes might be born at

one moment and die somewhat later.1,2

We can summarize this in a “barcode” that

encodes these births and deaths. Here is a picture

of a function on the 2 sphere and the persistent

homology in dimensions 1 and 2 of the associated

filtration of the sphere.

In the function setup, persistent homology can

be thought of as a variant of Morse theory. Each

critical point of a Morse function either announces

the birth of a homology class or is the death knell

of another. Thus critical points are always visible

in the barcode of homology either in the index

dimension or one lower.

Now let us return to the kinds of examples that

motivated our discussion. If one starts with a sub-

manifoldM of Euclidean space (say, a human face)

and samples many points from it (pointillistically),

we can consider the function f (x) = smallest dis-

tance from x to any of the sample points. The

homology of these sublevel sets can be computed

using computer algorithms. If s is larger than the

density of the samples, then at that scale one

has all of the homology classes ofM present, and

if s is not too large, the homology will be that

ofM (although, after a while, the homology classes

ofM will die).

1Even if Z is compact, if the function is just assumed

continuous, then at particular levels one can have infi-

nite dimensional homology. However, the homology that

persists over any positive length interval is necessarily fi-

nite dimensional—already a good reason to look at such

homology groups.
2If the function f is nice, then the persistent homology

can be thought of as a derived pushforward sheaf.
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This picture shows, on the left vertical axis,
the birth of 0-dimensional homology classes
(essentially components) and their deaths (the
coalescing of components). For 1-dimensional
homology it looks like this:
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1

F

A typical example of PH1 taken from 1400

samples of a 2-torus looks like this (with the

persistence parameter being drawn horizontally,

as is the usual custom):
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T2 a = 1/2 b=2: Dimension 1

In this example, there was no noise; the short
bars are indicative of the irregularities and inef-
ficiencies of the sampling. Much remains to be
learned about the shape of barcodes of data, but
there are theorems that tell us how to use PH
to compute genuine homology from samples that
are sufficiently dense and not too noisy.

In almost all applications, a key role is played
by a stability theorem that asserts that for nearby
functions (or filtrations), the barcodes cannot be
very far apart, in a precise quantitative sense.
The topology on the space of barcodes has two
barcodes being close if by ignoring “short inter-
vals” we can match up their long intervals in such
a way that corresponding intervals have nearby
endpoints. A picture should suffice:

is “close” to

because, aside from the “short” intervals, the
barcodes can be closely aligned.

The stability theorem of Edelsbrunner, Cohen-
Steiner, and Harer says that if functions are at
mostC apart, then the long bars of their per-
sistence diagrams correspond—and indeed their
initial and terminal points cannot be shifted by
more thanC, although short intervals of length
< C can be arbitrarily different. The reader can
think about the diagrams of the functions y = x2

and x2 + sin(10000x) on R to see why this is true.
When we apply these ideas to a discrete group

with the word metric,3 we form a different nested

3For any finitely generated group, we define the distance

between two group elements to be the number of multi-

sequence of spaces. These spaces are all simplicial
complexes. The space associated with the number
r (for r > 1) has k-simplices spanned by k + 1
group elements that are a pairwise distance at
most log(r) apart.

It is easy to check that these simplicial com-
plexes for different generating sets or for different
uniform lattices in the same Lie group are close
to one another (essentially the distance is deter-
mined by the length of the words describing one
generating set in terms of the other) and there-
fore have close persistent homology. This can be
used to show that certain homological properties
of groups only depend on “coarse quasi-isometry
type” and, e.g., agree for different uniform lattices
in the same Lie group. As an example, essen-
tially due to Gersten, the last dimension for which
there is a long, i.e., infinitely long, interval in
the persistent homology detects cohomological
dimension.

For our last example, consider a Riemannian
manifoldM . Our space will beX = ΛM = {γ : S1 →

M}, the space of smooth loops in M . Our function
is given by the “log energy”

logE(γ) = log

∫
< γ′(t), γ′(t) > dt,

where<,> denotes the Riemannian inner product.
Note that while the log energy depends on the
metric, for two metrics on the same compact
manifold, the difference between these functions
on X is bounded. As a result, by stability, the
persistence homology of this loop space—up to
finite distance—is an invariant of the manifold,
i.e., is independent of the metric. We are most of
the way toward proving the following theorem,
essentially due to Gromov:

Theorem. Let M be a compact Riemannian man-
ifold. The question of whether there is a universal
constant C so that every closed nullhomotopic geo-
desic of length L can be contracted through curves
of length at most CL is independent of the metric
on M ; indeed, it only depends on the fundamen-
tal group of M . This condition is equivalent to the
nonexistence of arbitrarily long persistence inter-
vals in PH0 of the component of the constant loops
in ΛM .

The final statement of the theorem explains the
clause immediately preceding it. The geometric
condition about geodesics depends only on the
fundamental group (and not on the manifold)
because this is true, almost by definition, for
the 0 dimensional homology of the space of
loops. Examples for which this condition does not
hold are finitely presented groups with unsolvable

plications by generators it takes to go from one element

to the other. Although this depends on the generating set,

many of the large-scale properties of this metric space do

not, as is explained in Roe’s article [3].
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word problem (for a bound on the size of the
persistence intervals could be used to give an
algorithm for solving the word problem). For
manifolds with such fundamental groups, the
theorem asserts the existence of many interesting
closed nullhomotopic geodesics. More information
can be found in Alex Nabutovsky’s talk at the 2010
ICM.

The terminology of persistence homology can
be viewed as an example of applied applied math.
The needs of applied math have given us a
very convenient vocabulary for expressing certain
questions and arguments in pure mathematics.
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