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Suppose we are given a point cloud K in a euclidean space of dimension d. Suppose also that

we are given a threshold r so that any two point within r from each other are to be considered
"close". Then each pair of points like that is connected by an edge. Further, if three points are
connected to each other, pairwise, by edges, we add a face spanned by these edges. If there are
four, we add a tetrahedron, etc. From vertices to tetrahedra and beyond, we call them 0-, 1-,
2-, ..., d-cells. The result is a cell complex made of k-cells that are attached to each other along
(k − 1)-cells. (Note that there are many ways to build a cell complex from a point cloud.)
What do we want to learn about K? We want to quantify its topology by means of the so-

called Betti numbers: B0 is the number of connected components in K; B1 is the number of holes
or tunnels (1 for letter O or the donut; 2 for letter B and the torus); B2 is the number of voids or
cavities (1 for both the sphere and the torus), etc.
How does one compute Betti numbers? The methods come from homology theory. One starts

by considering the collection Ck(K) of all combinations of cells of the same dimension k, called
chains,. Together they form a chain complex C∗(K). A k-chain can be recorded as an N -vector,
where N is the total number of k-cells in K. As an illustration, a component of this vector is 1
if the corresponding cell is present, −1 if it present with the opposite orientation, and 0 if it is
absent. The boundary of a k-chain is the chain comprised of all (k − 1)-faces of its cells. Then
the boundary operator ∂ : Ck(K)→ Ck−1(K) acts on the chain complex and is represented by a
matrix.
From the chain complex C∗(K) the homology group is built by means of the standard tools

of linear algebra. To capture the topological features one concentrates on cycles, i.e., chains
with zero boundary, ∂A = 0. Further, one can verify whether two given k-cycles A and B are
homologous: the difference between them is the boundary of a (k + 1)-chain T : A−B = ∂T . In
this case, A and B belong to the same homology class H = [A] = [B]. Examples of homologous
A and B are: two vertices in the same component of any complex (k = 0); two longitudes of
the torus, but not a longitude and a latitude (k = 1); the inner surface and the outer surface
of a "thick" sphere (k = 2). The totality of these equivalence classes in each dimension k form
the k-th homology group Hk(K) of K, collectively H∗(K). Commonly, Hk(K) is simply a vector
space and its dimension is equal to the corresponding Betti number Bk.
In addition to computing the Betti numbers as the global topological characteristics of the

complex, homology theory can also provide local information. For every small patch P of K we
compute the relative homology H∗(K,K\P ) by, essentially, collapsing the complement of P to a
single point. Then, if K is a manifold, its dimension is equal to n provided: Hn(K,K\P ) 6= 0
and Hk(K,K\P ) = 0 for k 6= n.
The methods for computing homology groups are well developed. In real life however the

point clouds are noisy and one needs to evaluate the significance of the topological features in this
uncertain environment. We measure the "robustness" of the Betti numbers as follows. Instead
of using a single threshold and studying a single cell complex, we consider all thresholds and all
possible cell complexes. The idea is to analyze all of them, then pool the topological features
together in a single structure, and finally pick the features that lie within the user’s choice of an
acceptable level of noise. Homology theory provides a solution for this problem.
First we combine the homology groups of all the cell complexes into one structure. For example,

we may have a sequence of complexes:

K1 /→ K2 /→ K3 /→ K4 /→ . . . /→ Ks,

where the arrows are inclusions: in,n+1 : Kn /→ Kn+1, and let in,m : Kn /→ Km be defined
as the compositions. This structure {Kn} is called a filtration. Further, each of these inclusions
generates a homology homomorphism: in,m∗ : H∗(K

n) /→ H∗(K
m). Commonly, these are simply
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linear operators represented by matrices. Then we have a sequence of homology groups connected
by homomorphisms:

H∗(K
1)→ H∗(K

2)→ . . . → H∗(K
s) −→ 0.

The homology group of filtration {Kn} captures all homology classes of all the complexes in a
compact way:

H∗({Kn}) = ker i1,2∗ ⊕ ker i2,3∗ ⊕ ker i3,4∗ ⊕ . . .⊕ ker is,s+1∗ .

Indeed, from the homology group of each complex we take only the elements that are about to die
(go to 0). Since each dies only once, there is no double-counting. Since the sequence ends with
0, we know that everyone will die eventually. Thus every homology class appears once and only
once.
Next, the significance of a homology class in the sequence is measured by how long it lives before

it ends up at 0. This number p is called the persistence of the homology class x: in,n+p∗ (x) = 0
and in,n+p−1∗ (x) 6= 0. Given a positive integer p, the p-noise group Np

∗ ({Kn}) is comprised of the
homology classes with the persistence less than p :

Np
∗ ({Kn}) = ker i1,1+p∗ ⊕ ker i2,2+p∗ ⊕ ker i3,3+p∗ ⊕ . . .⊕ ker is,s+p∗ ,

and the p-persistent homology group is

Hp
∗ ({Kn}) = H∗({Kn})/Np

∗ ({Kn}).

In other words: if the difference between two homology classes is deemed noise, they are equivalent.
The homology group of the filtration can be computed as:

H∗({Kn}) = H∗(C∗({Kn})),

where C∗({Kn}) =
L

nC∗(K
n) is the graded module of chains over the ring of polynomials k[t]

with t · x = (0, i1,2∗ (x1), i2,3∗ (x1), ..., is−1,s∗ (x1)), where x = (x1, x2, ..., xs) and xn ∈ C∗(K
n). The

method has been implemented as a Java-based computer program called jPlex with computational
cost of O(N3), where N is the number of cells in K.
Alternatively, the homology group is computed via the mapping cone of filtration {Kn}, which

is the following chain complex

Cone({Kn}) = C∗+s(K
1)⊕ C∗+s−1(K

2)⊕ ...⊕ C∗+1(K
s−1)⊕ C∗(K

s).

The mapping cone captures this difference between the chain complexes of the elements of the
filtration: everything in C∗(K

1) is removed unless it also appears in C∗(K
2) under i∗. Then the

homology group of filtration {Kn} is computed as:

H∗({Kn}) = H∗(C∗(K
1)⊕ Cone({Kn})).

A two-parameter "filtration" {Kn,m} can be built from a point cloud: n = n(r), where r is
the radius of the ball, and m = m(d), where d is the density of the cloud. Homology theory allows
us to handle this situation as well. Suppose we have a partially ordered set I and a collection of
complexes indexed by I, {Kn}n∈I , with the inclusions in,m : Kn → Km for all n ≤ m. Then the
homology of this "poset filtration" is

H∗({Kn}) =
L

n

T
m≥n ker i

n,m
∗ .

The noise groups and the persistence groups are defined as before.
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