
 

 

 

Abstract 
 

The paper provides a method of graph representation of 

gray scale images. For binary images, it well known that 

one has to capture not only connected components but 

also the holes. For gray scale images, there are also two 

kinds of “connected components” – dark regions 

surrounded by lighter areas or light regions surrounded 

by darker areas. These regions are the lower and upper 

level sets of the gray level function respectively. The 

proposed method represents the hierarchy of these sets, 

and the topology of the image, by means of a graph. This 

graph contains the well known inclusion trees but it is not 

a tree in general.  

 

1. Introduction 

 One of the main approaches to segmentation of gray 

scale images relies on capturing upper and lower level sets 

of the gray level function of the image. The rationale for 

this approach is that the connected components of these 

sets are arguably building blocks of real items depicted in 

the image.  

The connected components of the upper level sets have 

also a clear hierarchy based on inclusion. This hierarchy 

provides a graph representation of the topology of the 

image. It is called the inclusion tree. Various approaches 

to the inclusion tree have been proposed and efficient 

algorithms have been developed ([1], [13], [16], [17], [18] 

and many others).  

The connected components of lower level sets may be 

objects and the connected components of upper level sets 

may be holes in these objects, or vice versa. Meanwhile, 

the inclusion trees for upper and lower level sets, if 

considered separately, do not help in finding out which 

object has which hole. Therefore, in order to capture the 

topology of the image the two trees have to be combined 

in some way. Approaches to such a representation are 

proposed in [1], [16]. However, these representations are 

trees. 

In the present paper we follow the lower/upper level set 

approach to the graph representation of the topology of 

gray scale images but put forward a non-tree graph 

representation. The proposed graph contains complete 

copies of the upper and lower level inclusion trees. The 

proposed method is implemented via a “naïve”, level-by-

level, construction algorithm that simultaneously captures 

both lower and upper level sets in a single sweep. 

The background in topology as it applies to analysis of 

binary images is discussed (Section 2). We also present 

some background for a couple of standard topological 

tools. The first tool is cell decomposition: the image is 

represented as a combination of pixels as well as edges 

and vertices (Section 3). The second tool is cycles: both 

the connected components and the holes are captured by 

circular sequences of edges (Section 4). The data structure 

– the topology graph – for the hierarchy of objects and 

holes is given (Section 5). The algorithm for the 

construction of the topology graph is incremental – every 

time a pixel is added, the topology of the resulting binary 

image is re-computed (Sections 6 and 7).  

The justification for the proposed approach to the 

topology of gray scale images relies on both the analysis 

of binary images and prior research (Section 8). The graph 

representation of the topology – the topology graph – of a 

gray scale image is constructed incrementally as we go 

through the sequence of gray scale thresholds (Section 9).  

The analysis algorithm also includes filtering of the 

topology graph. A comparison of the topology graph to the 

inclusion tree, especially the version presented in [16], 

shows certain advantages (Section 10). An example is 

given of an image the topology graph of which is not a 

tree.  

The implementation issues such as the complexity 

(quadratic), memory requirements (linear), and processing 

time of the algorithm (40 seconds per 1 million pixels) are 

discussed (Section 11). The conclusion is that the 

algorithm is practical. The algorithm has been tested and 

shown reasonably stable under noise and other image 
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Figure 1.An image and its gray level function. 



 

 

modifications (Section 12). Further research directions 

are: color images, video, and morphology (Section 13). 

2. The topology of a binary image 

To justify our approach to gray scale images, we will 

start our analysis with topology of binary images.  The 

reason for this approach is that we prefer in the beginning 

to deal with topological issues in the simplest possible 

setting. These issues have been studied over the last 100 

years or so and they are well understood.  

All the background comes from [11] and [7] (in the 

general topological context) and from [15] (in the context 

of digital image analysis). However, only certain 

elementary concepts are used in this paper. Two basic 

tools are also used in the next two sections: cell 

decomposition and cycles.  

Our goal is to capture the topological features present in 

the image: connected components and their holes. 

 

 
For example, in first image in Figure 2 there are two 

objects and the first one has two holes. 

This problem is commonly known as "connected 

component labeling" and has many different solutions. 

Even though the approach we use is different from those, 

the output is of course the same. 

We think of black objects as connected components and 

white objects as holes in the dark objects. However, in the 

second image in Figure 2 we see white objects on black 

background. This approach is also feasible.  

To stay consistent, we have to choose one of these two 

options. We choose the former: 

Binary images are analyzed as if they have black 

objects on white background.  

As a result, the white objects that touch the border are 

not counted.  

Next we make this approach more precise. 

A binary image is a rectangle covered by black and 

white pixels arranged in a grid. In order to study the 

topology of the image it is reasonable to think of a pixel as 

a square, or a tile: [n, n + 1] × [m, m + 1].  

 

 

The union of any collection of pixels is a subset of the 

Euclidean plane. Therefore it acquires its topology from 

the plane [11]. In this setting, the concepts of “connected 

component” and “hole” have the standard meaning. 

3. Cell decomposition of binary images 

The boundary of a pixel is the combination of its four 

edges. Since an edge is shared by two adjacent pixels, 

keeping the list of these edges is a way to record how 

pixels are attached to each other. Meanwhile, keeping the 

list of vertices is a way to record how edges are attached to 

each other. This is called cell decomposition. The idea of 

cell decomposition can be traced back to the Euler formula 

[11].  

It is standard in algebraic topology [11], [3] to represent 

topological spaces as “cell complexes”. This approach has 

been extensively applied to digital image analysis [10] and 

geometric modeling [14]. This method of cell 

decomposition differs in technical details from those that 

use “darts” [2], [7] (see also [12]). 

In the 2-dimensional setting cells are defined as 

follows: 

 a vertex {n}× {m} is a 0-cell, 

 an edge {n}× (m, m + 1) is a 1-cell, and 

 a face (n, n + 1) × (m, m + 1) is a 2-cell. 

Thus cells are “open”. Then, cell decomposition is a 

partition of the union of black (closed) pixels into the 

union of a collection of disjoint (open) cells. 

 
The first advantage of this approach is its generality. 

The pixels are attached to each other along the edges they 

share:  

 a vertex is a 0-cell, 

 two adjacent edges are 1-cells and they share a 

vertex, a 0-cell, 

 two adjacent faces are 2-cells and they share an 

edge, a 1-cell. 

This approach is applicable to all dimensions. 

Another advantage is related to the fact that we want 

our algorithm to be incremental – adding one pixel at a 

time. As a result it can be extended to gray scale images, 

and later to color images, video, etc. 

Figure 4. Left: cell decomposition of the pixel. The edges and vertices 

may be shared with adjacent pixels. Right: cell decomposition of the 

image of black eight pixels arranged in a square. 

 
. 

Figure 3. A binary image is represented as a combination of 
square tiles. 

Figure 2. A binary image and its negative. 



 

 

With cell decomposition, when we need to add a pixel 

to the image, we add its vertices first, then the edges, and 

finally the face of the pixel itself. This makes re-

computing the topology easier than one that adds a whole 

pixel at once.  Indeed, consider the fact that the new pixel 

is adjacent to 8 other pixels (the 8-connectedness) and 

these 8 pixels may belong to up to 4 different components. 

The result is that the number of cases to consider is quite 

high. Meanwhile, if an edge is added instead, the vertices 

are already present. The result is that there are only 4 cases 

to consider. The new edge may 

1. link two components to each other on the outside, 

2. link a component to another component inside its 

hole, 

3. complete a hole in a component, or 

4. break a hole into two. 

Which of these events occurs is determined based on the 

local information (Figures 12-15). 

The cell decomposition also makes certain geometric 

concepts more straightforward. First, an object and its 

background don’t share pixels, only edges. As a result, the 

area of a component plus the area of the complement is 

exactly the total area of the image. Second, the perimeter 

isn’t the number of pixels in its boundary but the number 

of edges.  

At this point we provide a formal definition of the main 

concept of cell decomposition. Any collection γ of 0-, 1-, 

and 2-cells is a cell complex provided  

 if γ contains an edge (1-cell) then γ contains its end 

points (0-cells) as well, and 

  if γ contains a face (2-cell) then γ contains its 

edges (1-cells) as well. 

We will refer to the cell complex of the whole rectangle as 

the carrier. 

Notice that we allow a cell complex to contain vertices 

and edges that are not parts of faces. The reason for this is 

the incremental algorithm we propose adds a pixel to the 

image by adding its vertices, edges, and face (in that 

order) and we want to treat this collection of cells as a cell 

complex at every step. 

Cell decomposition of the union of black pixels in a 

binary image produces a cell complex. We will call it the 

cell complex of the image. 

4. Using cycles to capture topological features 

in binary images  

Both components and holes are captured by cycles. In a 

cell complex, 

 a 0-cycle is any collection of vertices; 

 a 1-cycle is any collection of circular sequences 

of edges. 

Thus a k-cycle is a collection of k-cells [11]. 

We will concentrate on two special kinds of cycles:  

 a 0-cycle that follows the outer boundary of a 

connected component, 

 a 1-cycle that follows the outer boundary of a 

hole.  

We will call then generator cycles. As they are the only 

ones we will deal with, we will refer to them as simply 

cycles. 

Observe that every 0-cycle of this kind can be 

represented by a 1-cycle, except in the case of a single 

vertex component. This is the approach we adopt in the 

following. 

A 0-cycle is traversed clockwise (on the outside of the 

object like a rubber band) and a 1-cycle is traversed 

counterclockwise. In the either case black is on the right 

and white is on the left. 

 
 

 

 

Given a cell complex, any cycle can be traversed by 

taking left turns from the initial edge in such a way that 

black pixels are always on the right - until this edge is 

reached again. This fact is used in the analysis algorithm. 

  
 

 

 

This approach results in a natural and unambiguous 

representation of the regions by means of the curves that 

enclose them (cf. [15]).  

The result of this topological analysis is a partition of 

the binary image. This partition is a collection of non-

overlapping regions, connected sets of black pixels and 

connected sets of white pixels, that covers the whole 

image. The partition is achieved by finding boundaries of 

these regions as 0- and 1-cycles.  

Knowing the boundaries of the objects allows us to 

compute their areas, moments, centroids, etc via Green’s 

Theorem. 

Figure 5. The objects and the holes are captured by cycles. Here A 
and B are 0-cycles (red), C and D are 1-cycles (green). 

 

Figure 6. Left: a 0-cycle. Right: a 1-cycle. 

 



 

 

5. A graph representation of the topology of a 

binary image 

First we consider a graph representation for the 

topology of a cell complex. It has the following simple 

structure. Every node represents a cycle. If an object has a 

hole, there is an arrow connecting these two cycles to 

indicate the inclusion. For convenience, we add a node for 

the whole rectangle (carrier). It is a direct successor of all 

0-cycles. 
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This data structure is entirely adequate to capture the 

topology of the cell complex. Our interest is however the 

whole binary image. The suggested data structure does not 

distinguish between an object and an object inside a hole 

in another object. To capture this information, we need the 

graph to contain this information. 

The topology graph of a binary image is a directed 

graph. Its nodes correspond to the cycles (objects and 

holes) in the cell complex of the image and the arrows 

correspond to inclusions of these sets. More precisely,   

 if an object has a hole, there is an arrow from the 

latter to the former, and 

 if a hole has an object in it, there is an arrow from 

the latter to the former. 

In addition, there is an arrow from every object to the 

carrier.  

Thus, the topology graph captures not only the topology 

of the cell complex of the image but also the way this 

complex fits into the complex of the carrier. 

The first part of the analysis algorithm is building the 

topology graph.  

The algorithm is incremental. Starting with the empty 

image, pixels, one by one, are added. More precisely, a 

cell complex is maintained and cells are added to this cell 

complex as follows: vertices of the pixel first, then its 

edges, unless those are already present as parts of other 

pixels, and finally the face of the pixel. One of the 

alternative approaches is to add all vertices first, then all 

edges, then all faces. 

The cell complex grows following this order: 

1. the empty cell complex, 

2. the cell complex of the image, 

3. the carrier. 

These three cell complexes will be called frames of the 

image. Besides these, the cell complex passes through 

intermediate stages. The cycles of the frames are called 

principal cycles and the rest are auxiliary cycles.  

Instead of the topology graph we build the augmented 

topology graph, or simply the augmented graph, of the 

image. As the new pixels are added, components merge, 

holes split, etc. Adding a new vertex creates a new 

component and a new node in the graph. Adding a new 

edge may connect two components, or create, or split a 

hole. Adding the face eliminates the hole. The information 

about these changes is recorded in a graph. Each node in 

the graph represents a cycle. The directed arrows that 

connect the nodes represent the merging and the splitting 

of the cycles.    

The augmented graph is an acyclic directed graph 

which is not a tree. The degrees are 1 or 2. 

The topology graph can be extracted from the 

augmented graph by removing all auxiliary nodes and 

adding arrows between the principal nodes accordingly.  

The second part of the algorithm is filtering of the 

principal cycles based on their characteristics such as size, 

location, etc.  

The filtering criteria for binary images should be set in 

such a way that it would be impossible to remove an 

object while preserving a hole in it. Removing objects and 

holes with the area below a given threshold is such a 

criterion provided the area is computed as the area inside 

the corresponding cycle rather than the actual area of the 

object.  

The remaining principle cycles represent the simplified 

topology of the image. We will call them active cycles. 

6. Example 

Before we present the pseudocode of the algorithm in 

the next section, we consider an extremely simple example 

– analysis of a single pixel image. 

 

Figure 7. A graph representation of the topology of the cell 

complex in Figure 5, another cell complex with this 

representation, the topology graph of this image. 

 



 

 

 
The process consists of 9 steps corresponding to the 9 

items to be added.  

 

 
 

 

 

The construction of the image is represented by the 

augmented graph. The nodes of this graph correspond to 

the cycles and the arrows correspond to merging and 

splitting of the cycles. Each arrow is accompanied by a 

number indicating which item is being added.  
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At the first stage we have 4 nodes, corresponding to the 

0-cycles. Then they merge into one. This 0-cycle splits 

into two cycles, a 0-cycle and a 1-cycle. Finally, this 1-

cycle disappears. The end result is of course just the last 

existing 0-cycle, H. The topology graph is H → Carrier. 

Now, suppose the image consists of two black pixels on 

white background. Then the construction of the augmented 

graph starts with adding the first pixel, as above. Next, if 

the second pixel isn’t adjacent to the first, the second stage 

looks exactly the same as the first. It ends with a single 

cycle, H’. In this case the augmented graph consists of 

these two parts connected to the carrier.  
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If the second pixel is adjacent to the first, the 

augmented graph continues to grow beyond H. There are 6 

steps. Initially only H, the 0-cycle created during the first 

stage, is present. Then, two new vertices are added 

creating two new 0-cycles, B’ and C’. Then two edges are 

added and these three cycles merge. When another edge is 

added, a 1-cycle appears. Adding the face removes this 

cycle. Only one 0-cycle is left, H’. It corresponds to the 

two pixel object.  

7. The pseudocode of the algorithm for binary 

images 

 A crucial part of the algorithm is the correspondence 

between edges and cycles. Each directed edge is given by 

the coordinates of its initial point and the direction: left, 

right, up, down. For convenience, vertices are recorded as 

edges with 0 direction. Then this correspondence takes the 

form of a table, T, so that for every directed edge E, T(E) 

is the cycle that passes through E. This table is updated at 

every step of the algorithm. 
//------------------------------------------- 

ImageAnalysis with binary image I  

 

FOR all black pixels P in I 

    CALL AddPixel with P 

ENDFOR 

Add all nodes with no descendants to the list        

of principal cycles 

 

FOR all white pixels P in I 

    CALL AddPixel with P 

ENDFOR 

Add the carrier to the list of principal cycles 

 

FOR all principal cycles C 

   IF Evaluate(C) == 1 and  

      Add C to the list of active cycles 

   ENDIF 

ENDFOR 

//------------------------------------------- 

Cycles can be evaluated based on their measurements: 

area, perimeter, roundness, etc. The most typical is the 

area, as below. Here MinArea is the lowest area set by the 

user. 
//------------------------------------------- 

Evaluate with cycle C  

 

IF the area enclosed by C < MinArea THEN 

   RETURN 0 

Figure 8. Adding a stand-alone pixel requires 9 steps: adding 4 vertices, 

4 edges, and one face. 

. 

 
. 

Figure 11. The augmented topology graph: adding the second 

(adjacent to the first) pixel to the image. This graph is attached to the 
graph in Figure 10. 

Figure 10. A graph representation of the 9 steps required to add a 
stand-alone pixel. 

 

Figure 9. The stages of adding a single pixel to a blank image. The 

0-cycles are in red and the only 1-cycle is in green. 



 

 

ENDIF 

RETURN 1 

//------------------------------------------- 

Next is the operation of adding a pixel. It includes 

adding its vertices, its edges, and then the face of the pixel. 

Adding an edge means assigning cycles to both of the 

directed edges – forward E and backward -E. After all the 

edges have been added, there is always a 1-cycle inside 

the pixel. It is “removed” as the face closes the hole. 
//------------------------------------------- 

AddPixel with pixel P  

 

CALL AddVertex with upper right vertex of P 

CALL AddVertex with upper left vertex of P 

CALL AddVertex with lower right vertex of P 

CALL AddVertex with lower left vertex of P 

 

CALL AddEdge with lower edge of P 

CALL AddEdge with right edge of P 

CALL AddEdge with upper edge of P 
CALL AddEdge with left edge of P 

 

E = lower edge of P directed counterclockwise 

CALL RemoveCycle with 1-cycle A = T(E)  

//------------------------------------------- 

Adding a vertex is trivial. It creates one new 0-cycle 

represented by a node that isn’t connected to anything yet. 

But first you verify that the vertex isn’t already present.  
//------------------------------------------- 

AddVertex with vertex V  

 

IF V is present THEN 

 RETURN 

ENDIF 

Mark V as present 

Call CreateCycle with V RETURNING 0-cycle A 

//------------------------------------------- 

Adding an edge is the most complex step. There are 

four cases illustrated in Figures 12-15. Which case occurs 

is determined following the information in the 

correspondence table T.  
//------------------------------------------- 

AddEdge with edge E  

 

IF T(E) != NULL or T(-E) != NULL THEN 

 RETURN 

ENDIF 

 

CALL NextEdge with E RETURNING edge E1 

A = T(E1) 

CALL NextEdge with –E RETURNING edge E2 

B = T(E2) 

 

IF A == B THEN 

 CALL SplitCycle with E1, E2, and A 

ELSE 

 CALL MergeCycles with E1 and A, B 

ENDIF 

//------------------------------------------- 

 

Figure 12. Case (a): the new edge connects two different 0-cycles. 

 

 
Figure 13. Case (b): the new edge connects a 1-cycle and a 0-cycle. 

 

 
Figure 14. Case (c): the new edge connects a 0-cycle to itself. 

 
Figure 15. Case (d): the new edge connects a 1-cycle to itself. 

 

A 0-cycle can merge with either 0- or 1-cycle: case (a) 

or (b).  
//------------------------------------------- 

MergeCycles with cycles A, B and edge E  

 

CALL CreateCycle with E RETURNING cycle C 

 

CALL MarkEdges with E and C 

 

Add arrows from A, B to C to the graph 

//------------------------------------------- 

Either a 0- or 1-cycle can split: case (c) or (d).  
//------------------------------------------- 

SplitCycle with edges E1, E2 and cycle A  

 

CALL CreateCycle with E1 RETURNING cycle C 

CALL CreateCycle with E2 RETURNING cycle D 

 

CALL MarkEdges with E1 and C 

CALL MarkEdges with E2 and D 

 

Add arrows from A to C, D to the graph 

//------------------------------------------- 

 Creating a cycle means adding a new node to the graph. 
//------------------------------------------- 

CreateCycle with edge E  

 

Create node A in the graph 

T(E) = A 

RETURN A 

//------------------------------------------- 

 Removing a cycle means assigning NULL to all of its 

edges. 
//------------------------------------------- 



 

 

RemoveCycle with cycle A  

 

FOR all edges E in I 

   IF T(E) == A THEN  

     T(E) = NULL 

   ENDIF 

ENDFOR 

//------------------------------------------- 

 Given an edge of a cycle, one can find the next edge of 

the cycle. 
//------------------------------------------- 

NextEdge with edge E  

 

Start points of edges E1, E2, E3, E4 = end point 

of E 

Direction of E1 = direction of E + 90 degrees 

Direction of E2 = direction of E 

Direction of E3 = direction of E - 90 degrees 

Direction of E4 = - direction of E 

 

FOR edge G = E1, E2, E3, E4  

   IF T(G) != NULL  

      RETURN G 

   ENDIF 

ENDFOR 

//------------------------------------------- 

 Next function goes around a given cycle and assigns its 

value to the edges. 
//------------------------------------------- 

MarkEdges with edge E and cycle A  

 

CALL NextEdge with edge E RETURNING edge G 

WHILE G != E 

   T(G) = A 

   CALL NextEdge with edge G RETURNING edge G 

ENDWHILE 

 

IF the full turn is clockwise THEN 

 A is a 0-cycle 

ELSE 

 A is a 1-cycle 

ENDIF 

//------------------------------------------- 

8. The topology of a gray scale image  

In a gray scale image every pixel is associated a number 

indicating the gray level. These numbers run from 0 to L-

1, where L is usually 256 (L=2 for binary images). One 

can also think of it as a function of two variables, the gray 

level function, defined on a rectangle [0, N) × [0,M). 

 Even though topology of binary images is well 

understood [11], [7], [15], the methods are not directly 

applicable to gray scale images. The method suggested 

above however is fully applicable with minor changes. 

The gray level function is a function from a rectangle to 

the set {0, 1,…, L-1} which is constant on each square [n, 

n + 1) × [m, m + 1).  

Given a number T, thresholding replaces all the pixels 

with gray level lower than or equal to T with black leaving 

the rest white. 

The output of thresholding is a binary image. However, 

because of the loss of information during thresholding, 

this binary image cannot always serve as an adequate 

replacement of the original gray scale image. Below are 

two examples of images for which a single threshold 

wouldn’t work. 

 
 

 

 

 
 

We justify our approach to analysis of the topology of 

gray scale images in two ways. First we appeal to analysis 

of binary images in the previous sections and second to 

prior research on the subject. 

In binary images objects are either connected black 

areas surrounded by white background or connected white 

areas surrounded by black background. Similarly, our 

initial assumption about gray scale images will be that 

objects are either darker areas surrounded by lighter 

background or lighter areas surrounded by darker 

background. We propose the following terminology:  

 a dark object is a connected component of a lower 

level set and  

 a light object is a connected component of an upper 

level set of the gray level function.  
 This approach is in agreement with the following gestalt 

principle (Werthheimer’s contrast invariance principle) 

[6]: 

Image interpretation does not depend on actual 

values of the gray levels, but only their relative 

values. 

This principle suggests that one should look at the level 

sets of the gray scale function, as well as lower and upper 

level sets. 

A related principle is discussed in [16]: 

Figure 17. A gray scale image and its gray level function. The gray 
on the left is the same as on the right. Therefore no single threshold 

will capture both squares. 

Figure 18. The gray of the ridges inside the green circle is close to 

the gray between the ridges inside the red circle. Therefore no single 
threshold will capture all ridges. 



 

 

We assume our sensor is such that each pixel knows 

only if it is brighter, equal, or darker than its 

neighbor pixels, and that these comparisons can be 

propagated. 

The conclusion is that the lower and upper level sets of the 

gray scale function should serve as the main building 

blocks in image segmentation. This conclusion is justified 

by the analyses conducted in [1], [16], [7]. 

As the objects are the lower and upper level sets, the 

boundaries of the objects are the level curves of the gray 

level function. Since all of these sets are connected 

collections of pixels they can be represented as 0- and 1-

cycles, as before.  

 At this stage the analysis does not have unambiguous 

results. Let’s consider the image below as an example. 

 
 

 

It may seem clear that in the above image there are two 

objects and the first one has two holes. However, one may 

choose different thresholds for different level curves. The 

choice of these thresholds may affect the topology of the 

resulting image, as illustrated in Figure 20 below. All 

three outcomes are equally valid. 

 

 

 
 

 

 

 

 

Therefore the analysis has to include the following two 

stages: 

Stage 1. Collect all possible objects in all binary images 

obtained via thresholding for every value of T from 0 to L. 

We will call these images frames. 

Stage 2. Filter these objects to resolve the ambiguity. The 

result is the list of active cycles. 

 To ensure that the ambiguity is resolved properly we 

will adhere to the following “2D uniqueness principle”: 

If a dark object contains another dark object, only 

one of them is taken into account. 

A similar principle is used for light objects. Both are 

vacuously true for binary images. This principle 

guarantees that the active cycles you cross (from inside 

out or from outside in) will alternate: 0-cycle, 1-cycle, 0-

cycle, 1-cycle…  

The justification for this principle lies in the fact that in 

2D there can be no object in front of or behind another. 

So, either the larger object is the background for the 

smaller one or the smaller object is noise over the larger 

one. An object can have a hole in it however. 

 
 

 

 

Stage 2 may include applying user’s criteria of what is 

and what is not important in the image. Some specific 

criteria are discussed in Section 9.  

The result of the analysis is an image segmentation: the 

active cycles partition the image into regions each of 

which is identified as one of the following: 

 a dark object, 

 a light object, or 

 the background. 

This segmentation satisfies the following properties: 

 The outside border of a dark object is a 0-cycle. On 

the outside lies either a light object or the 

background. 

 The outside border of a light object is a 1-cycle. On 

the outside lies either a dark object or the 

background. 

9. A graph representation of the topology of a 

gray scale image 

The collection of all possible cycles is organized in a 

graph. Its structure is very similar to that of the topology 

graph of a binary image. Indeed, the collections of cycles 

of the frames are arranged in layers within the graph. Each 

Figure 19. The blurred version of the image in Figure 5. 

 

Figure 20. Each choice of thresholds produces a different topology. 
First: two dark objects, one with a hole – light object, another light 

object is a hole in the background. Second: two dark objects, one 
with two holes – light objects. Third: two dark objects with no 

holes. 

Figure 21. The circle may be noise (small size) or the square may be 

background (low contrast). 



 

 

of these cycles encircles a dark object from the outside or 

a light object from the inside.  

The nodes of the topology graph of a gray scale image 

correspond to light and dark objects of the image and the 

arrows indicate inclusions. More specifically,  

 there is an arrow from  every dark (light) object  to 

a dark (light) object that contains it if they 

correspond to consecutive gray levels, 

 there is an arrow from  every dark (light) object  to 

a light (dark) object that contains it if they 

correspond to the same gray level. 

 
The topology graph may be a tree, as in Figure 22, but 

generally it isn't (Figure 23). 
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The proposed algorithm is incremental: the layers are 

added one at a time. Every time we increase the threshold 

for the upper and lower level sets, there are six kinds of 

events that can (along with their combinations) happen to 

the connected components of these sets: 

1. a dark object grows, 

2. a light object shrinks, 

3. a dark object appears, 

4. a dark object forms a hole (a light object) inside, 

5. two dark objects merge, 

6. a light object splits. 

The last three events change the topology of the image 

(see Figures 12-15). Recorded in the topology graph, these 

events are the reason why it is not a tree. 

Just as with binary images, instead of the topology 

graph we build the augmented topology graph, or simply 

the augmented graph, of the image. The growing threshold 

creates a partial order on the set of pixels. In that order the 

pixels are added to the image. The procedure of building 

this graph with nodes representing cycles is exactly the 

same as the one presented in Section 5. The frames 

generate principal cycles and the rest are auxiliary cycles. 

The topology graph can be extracted from the augmented 

graph by removing all auxiliary nodes and adding arrows 

between the principal nodes accordingly.  

Let’s consider an example. Suppose the image consists 

of two adjacent pixels, black and gray, on white 

background. Then the construction of the augmented 

graph is exactly the same as described in Section 6. The 

topology graph is simply H → H’ → Carrier. Now, H’ 

contains H. Therefore only one of them should be active. 

Which one? Depending on the settings, the larger object 

(H’) may be preserved or the one that is more round (H). 

The algorithm for binary images is the process of 

adding pixels one by one while keeping track of changes 

in the topology. The same approach applies to gray scale 

images. In fact all pixels in the image are added in either 

case. The operation of adding a pixel and all functions it 

calls are exactly the same as in the case of a binary image 

(Section 7). The main difference is that there are L+1 

frames instead of 3. 

As some of the principal cycles are discarded, the 

remaining ones will represent the simplified topology of 

the image. If the uniqueness principle stated in Section 8 is 

followed, the output of the filtering step is a kind of 

topological sorting of the graph. Examples of image 

simplification based on filtering of lower and upper level 

sets are presented in [16] and [1]. 
//------------------------------------------- 

ImageAnalysis with gray scale image I  

 

FOR all thresholds T = 0, …, L-1 

   FOR all pixels P in I 

  IF the value of P <= T THEN  

    CALL AddPixel with P 

  ENDIF 

   ENDFOR 

 Add all nodes with no descendants to the list        

of principal cycles 

ENDFOR 

 

FOR all principal cycles C 

IF Evaluate(C) == 1 and C does not have a 

direct predecessor D such that C and D are 

both k-cycles and Evaluate(D) == 1 THEN 

      Add C to the list of active cycles 

   ENDIF 

ENDFOR 

//------------------------------------------- 

In this particular implementation of the algorithm, the 

objects are filtered based on their areas: objects with areas 

smaller than a certain threshold are considered noise. 

Since we measure the area of the inside the cycle that 

surrounds the object, it is easy to satisfy the uniqueness 

principle stated in Section 8. Indeed, since every successor 

of an object has higher area, we only need to check 

object’s direct predecessors. Other measurements that can 

be used in such a simple fashion are the total intensity, the 

integrated optical density and similar. 

Figure 23. An image and its topology graph, which is not a tree. 

Here A is the complement of the face and F is the complement of 

the mouth. 

Figure 22. An image and its topology graph (L=3). Here the objects 

are: mouth E (black), head B (gray), eyes C and D (light gray). 
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What if the area is replaced with contrast? By the 

contrast of a dark object, we understand the difference 

between the highest gray level adjacent to the object and 

the lowest gray level within the object (similar for light 

objects). Unlike the area, the contrast can go up and down 

as we move from a lower level set to the next. Therefore 

the filtering step cannot be carried out by checking only 

the direct predecessors and successors, as with the area, 

and a whole graph search may be necessary. Notice that 

the contrast of an object is exactly its persistence [8] with 

respect to the sequence of frames.  

Objects can be evaluated and filtered based on any 

combination of their measurements and other 

characteristics such as location. Many filtering criteria 

have been proposed (e.g. [4], [9], [18]). All of them are 

also applicable to filtering the topology graph. 

10. Comparison of the topology graph to tree 

representations 

Other approaches to graph representation of gray scale 

images based on the lower and upper level sets have been 

proposed in [1], [16] (and for 3D simplicial meshes in [5]). 

Below we compare the topology graph to these two 

representations. Both are trees. 

First consider the method in [16]. Suppose we change 

the threshold from 0 to 255. Then, the connected 

components of lower level sets form a tree of growing 

sets. Similarly, the components of the upper level sets 

form a tree of shrinking sets. In either case, there are 

layers in the tree corresponding to the gray levels.  

 

 
The goal is to combine the two trees. The answer 

suggested in [16] is to consider the tree formed by 

connected components of the level sets. As levels sets 

correspond to lower and upper level sets, the end result is 

the “merged inclusion tree”. 

 

 
Because of the way they are merged, the structures of 

the two inclusion trees are lost. In particular, the lower 

level sets are mixed with the upper level sets. In addition, 

the gray levels are also mixed. Observe that losing this 

information makes it impossible to filter nodes by 

checking only the direct predecessors. Of course, the 

algorithm can be modified to preserve the relations 

between the lower level sets and the relations between 

upper level sets. The result would be the topology graph. 

In fact, the topology graph can be seen as an alternative 

way of combining the lower and upper inclusion trees. The 

latter is turned upside down and attached to the former.  

 

 
To summarize, the structure of the topology graph of a 

gray scale image differs from that of the merged inclusion 

tree in a number of ways: 

 The lower and upper inclusion trees remain intact 

within the graph. 

 The graph breaks into layers that coincide with of 

the topology graphs of the corresponding frames. 

 The topology graph is not a tree in general. 
In [1], the tree structure appears as morphological 

openings and closings of larger and larger scale are 

applied to the image. In other words, the minima and 

maxima of the gray scale function are flattened - slice by 

slice. The result is a hierarchy of lower and upper level 

sets that is recorded as a “scale tree”. Their example is 

below.  

Figure 26. This diagram illustrates the structure of the topology 

graph of a gray scale image. Only some of the links connecting 

the nodes corresponding to the same gray level are shown.  

Figure 25. This diagram illustrates the merged inclusion tree. In this 

tree there are no layers corresponding to the levels of gray anymore. 

Figure 24. This diagram illustrates the lower inclusion tree and 

the upper inclusion tree. The red are the lower level sets (dark) 
and the green are the upper level sets (light). In both trees the 

layers correspond to the levels of gray. 



 

 

 

 

11. Complexity of the algorithm 

 Suppose N is the number of pixels in the image.  

The memory usage is O(N). Indeed, there are two main 

data structures: cycles and edges. As adding a pixel creates 

no more than 9 nodes in the augmented graph, there are 

O(N) cycles. There are also O(N) edges in the image.  

During the construction of the topology graph, each of 

the N pixels is processed separately and each time at most 

9 new objects are created. The edges of the boundaries of 

some of these objects are marked, which can be done in 

O(N). Therefore, the complexity of this part of the 

algorithm is at most O(N
2
). 

As we go through the levels of gray in the image in 

Figure 28, the objects grow and fill the image. The 

boundary of each has to be traversed. Then the total 

number of edges to be visited is, roughly, 1+2+3+…+N, 

which adds up to O(N
2
). Therefore, the complexity of the 

algorithm is in fact O(N
2
). 

 

 
Such an image may seem unusual but images of maps 

and microchips may fall into this category. Images of cells 

or other particles do not. 

Suppose the image in Figure 28 is not quantized. Then 

the above analysis of the complexity of the algorithm 

applies to any other algorithm that traces all level sets in 

the image. This is the case with the fast level line 

transform [16] (step 4a). Therefore its complexity is 

O(N
2
), not O(NlogN) as claimed. 

Regardless of the design of the algorithm, tracing the 

level sets is necessary in order to compute the perimeters 

of lower and upper level sets. Only then they can be 

filtered based on their shapes.  

The complexity of filtering the graph is O(N).  

The algorithm was tested with a variety of images. The 

processing included: 

 constructing the topology graph,  

 computing various measurements of all objects, 

 filtering the objects based on these measurements 

and user’s settings.  

The testing was done on HP Pavilion laptop with Intel 

Core 2 Dual CPU T7500 2.2GHz. 

The diagram below provides an estimate for the 

processing time for natural images of reasonable size.  

 

 
 

For this range of sizes, the dependence appears close to 

linear. In this case, the processing takes, roughly, 40 

seconds for each million pixels in the image. The results 

suggest that the algorithm is practical.  

The performance of the algorithm presented in this 

paper is sacrificed for the sake of simplicity. One can 

expect that faster algorithms will be developed. 

12. Experiments 

 To further demonstrate the practicality of the algorithm, 

we analyze a few simple images. 

During processing, the areas, perimeters, and contrasts 

of the objects are also computed. These parameters are 

used to filter objects. The user indicates ranges of 

parameters of the features he considers to be irrelevant or 

noise.  

Figure 29. The processing time as a function of the image size. 

Figure 27. An image and its scale tree. Its topology graph is in 

Figure 22. 

 
 Figure 28. Left: the “comb”. Its perimeter is O(N). Right: one of its 

lower level sets. 



 

 

  
 The settings may be chosen based on a priori 

knowledge about the image. For example, the image in 

Figure 30 is 300×246. To capture the coins and ignore the 

noise and the small features depicted on the coins, one sets 

the lower limit for the area at 1000 pixels. 

 

  
 A good test of robustness of an image analysis method 

is the degree of its stability under rotations. The output for 

the original 640×480 fingerprint in Figure 33 is 3121 dark 

and 1635 light objects. For the rotated version, it is 2969-

1617. The errors are about 5% and 1%. By limiting the 

analysis to objects with area above 50 pixels, the results 

are improved to 265-125 and 259-124, respectively (2% 

and 1%). This test shows that even though the algorithm is 

sensitive (as is the image itself) to rotations, the error is 

reasonable and decreases as the objects get larger. 

An example of image simplification based on filtering 

of the topology graph is in Figure 34, below.  

 Stretching the image does not affect the count of 

objects. Shrinking makes objects merge. If the goal, 

however, is to count and analyze larger features, limited 

shrinking of the image does not affect the outcome. The 

count is also stable under noise and blurring.  

 The method works best with images that represent 

something 2-dimensional. It is not applicable to the 

images for which the third dimension is essential. For 

example, the method fails when the image contains: 

 occluded objects, 

 transparent objects, 

 objects well lit on one side and dark on the other. 

The method does not incorporate any morphological 

operations. As a result, scratches can’t be repaired or 

clustered cells can’t be separated unless there is a variation 

of intensity. 

13. Conclusions and further research 

 The method proposed in this paper is well grounded in 

classical mathematics and produces meaningful results for 

various gray scale images. Its speed and memory 

requirements make it practical for every-day use on 

today’s personal computers. 

One of the proposed innovations is that the topology of 

a gray scale image is represented by a graph, which is not 

a tree in general. 

The main issue still to be addressed is the issue of 

merging objects based on similarity and proximity rather 

than relative gray levels. 

A modification of the algorithm applies to color images 

and other multi-parameter images. It is possible to 

threshold an RGB image so that a binary image (frame) is 

created for each combination of red, green, and blue. The 

cycles from these frames form the topology graph of the 

color image.  

The ability to remove pixels in addition to adding pixels 

makes the algorithm track objects in a binary video. The 

same approach is applicable to sequences of 

morphological operations applied to a given binary image. 

Figure 34. An MRI of breast tissue and its version with all low 

contrast objects removed.   

Figure 33. The image of a fingerprint and its rotated version.   

Figure 32. The coins are captured in the version of the coins 

with salt-and-pepper noise.  

Figure 31. The coins are captured in the blurred version of the 

coins.  

Figure 30. The coins are captured.  



 

 

To develop a similar method for representation of the 

topology of 3D (and higher-dimensional) images one will 

follow the same pattern: decompose the image into 0-, 1-, 

2-, and 3-cells, then capture the topology with 0-, 1-, 2-, 

and 3-cycles, combine them into homology classes, and 

record the hierarchy of these classes as a graph. 

The following is a summary of characteristics of the 

proposed approach: 

 The approach and the method are justified by 

appealing to classical mathematics. 

 The new representation of the topology of a gray 

scale image ensures that components and holes are 

treated in a unified way and yet kept separate. 

 The new algorithm and its interpretation are simple 

and easy to understand.  

 The algorithm is practical. 

 The algorithm is incremental and as such can be 

easily generalized to analysis of color images and 

video. 
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