

Abstract

The paper provides a method of graph representation of

gray scale images. For binary images, it well known that

one has to capture not only connected components but

also the holes. For gray scale images, there are also two

kinds of “connected components” – dark regions

surrounded by lighter areas or light regions surrounded

by darker areas. These regions are the lower and upper

level sets of the gray level function respectively. The

proposed method represents the hierarchy of these sets,

and the topology of the image, by means of a graph. This

graph contains the well known inclusion trees but it is not

a tree in general.

1. Introduction

 One of the main approaches to segmentation of gray

scale images relies on capturing upper and lower level sets

of the gray level function of the image. The rationale for

this approach is that the connected components of these

sets are arguably building blocks of real items depicted in

the image.

The connected components of the upper level sets have

also a clear hierarchy based on inclusion. This hierarchy

provides a graph representation of the topology of the

image. It is called the inclusion tree. Various approaches

to the inclusion tree have been proposed and efficient

algorithms have been developed ([1], [13], [16], [17], [18]

and many others).

The connected components of lower level sets may be

objects and the connected components of upper level sets

may be holes in these objects, or vice versa. Meanwhile,

the inclusion trees for upper and lower level sets, if

considered separately, do not help in finding out which

object has which hole. Therefore, in order to capture the

topology of the image the two trees have to be combined

in some way. Approaches to such a representation are

proposed in [1], [16]. However, these representations are

trees.

In the present paper we follow the lower/upper level set

approach to the graph representation of the topology of

gray scale images but put forward a non-tree graph

representation. The proposed graph contains complete

copies of the upper and lower level inclusion trees. The

proposed method is implemented via a “naïve”, level-by-

level, construction algorithm that simultaneously captures

both lower and upper level sets in a single sweep.

The background in topology as it applies to analysis of

binary images is discussed (Section 2). We also present

some background for a couple of standard topological

tools. The first tool is cell decomposition: the image is

represented as a combination of pixels as well as edges

and vertices (Section 3). The second tool is cycles: both

the connected components and the holes are captured by

circular sequences of edges (Section 4). The data structure

– the topology graph – for the hierarchy of objects and

holes is given (Section 5). The algorithm for the

construction of the topology graph is incremental – every

time a pixel is added, the topology of the resulting binary

image is re-computed (Sections 6 and 7).

The justification for the proposed approach to the

topology of gray scale images relies on both the analysis

of binary images and prior research (Section 8). The graph

representation of the topology – the topology graph – of a

gray scale image is constructed incrementally as we go

through the sequence of gray scale thresholds (Section 9).

The analysis algorithm also includes filtering of the

topology graph. A comparison of the topology graph to the

inclusion tree, especially the version presented in [16],

shows certain advantages (Section 10). An example is

given of an image the topology graph of which is not a

tree.

The implementation issues such as the complexity

(quadratic), memory requirements (linear), and processing

time of the algorithm (40 seconds per 1 million pixels) are

discussed (Section 11). The conclusion is that the

algorithm is practical. The algorithm has been tested and

shown reasonably stable under noise and other image

A Graph, Non-Tree Representation of the Topology of a Gray Scale Image

Peter Saveliev

Marshall University

One John Marshall Drive, Huntington, WV 25755, USA
saveliev@marshall.edu

Figure 1.An image and its gray level function.

modifications (Section 12). Further research directions

are: color images, video, and morphology (Section 13).

2. The topology of a binary image

To justify our approach to gray scale images, we will

start our analysis with topology of binary images. The

reason for this approach is that we prefer in the beginning

to deal with topological issues in the simplest possible

setting. These issues have been studied over the last 100

years or so and they are well understood.

All the background comes from [11] and [7] (in the

general topological context) and from [15] (in the context

of digital image analysis). However, only certain

elementary concepts are used in this paper. Two basic

tools are also used in the next two sections: cell

decomposition and cycles.

Our goal is to capture the topological features present in

the image: connected components and their holes.

For example, in first image in Figure 2 there are two

objects and the first one has two holes.

This problem is commonly known as "connected

component labeling" and has many different solutions.

Even though the approach we use is different from those,

the output is of course the same.

We think of black objects as connected components and

white objects as holes in the dark objects. However, in the

second image in Figure 2 we see white objects on black

background. This approach is also feasible.

To stay consistent, we have to choose one of these two

options. We choose the former:

Binary images are analyzed as if they have black

objects on white background.

As a result, the white objects that touch the border are

not counted.

Next we make this approach more precise.

A binary image is a rectangle covered by black and

white pixels arranged in a grid. In order to study the

topology of the image it is reasonable to think of a pixel as

a square, or a tile: [n, n + 1] × [m, m + 1].

The union of any collection of pixels is a subset of the

Euclidean plane. Therefore it acquires its topology from

the plane [11]. In this setting, the concepts of “connected

component” and “hole” have the standard meaning.

3. Cell decomposition of binary images

The boundary of a pixel is the combination of its four

edges. Since an edge is shared by two adjacent pixels,

keeping the list of these edges is a way to record how

pixels are attached to each other. Meanwhile, keeping the

list of vertices is a way to record how edges are attached to

each other. This is called cell decomposition. The idea of

cell decomposition can be traced back to the Euler formula

[11].

It is standard in algebraic topology [11], [3] to represent

topological spaces as “cell complexes”. This approach has

been extensively applied to digital image analysis [10] and

geometric modeling [14]. This method of cell

decomposition differs in technical details from those that

use “darts” [2], [7] (see also [12]).

In the 2-dimensional setting cells are defined as

follows:

 a vertex {n}× {m} is a 0-cell,

 an edge {n}× (m, m + 1) is a 1-cell, and

 a face (n, n + 1) × (m, m + 1) is a 2-cell.

Thus cells are “open”. Then, cell decomposition is a

partition of the union of black (closed) pixels into the

union of a collection of disjoint (open) cells.

The first advantage of this approach is its generality.

The pixels are attached to each other along the edges they

share:

 a vertex is a 0-cell,

 two adjacent edges are 1-cells and they share a

vertex, a 0-cell,

 two adjacent faces are 2-cells and they share an

edge, a 1-cell.

This approach is applicable to all dimensions.

Another advantage is related to the fact that we want

our algorithm to be incremental – adding one pixel at a

time. As a result it can be extended to gray scale images,

and later to color images, video, etc.

Figure 4. Left: cell decomposition of the pixel. The edges and vertices

may be shared with adjacent pixels. Right: cell decomposition of the

image of black eight pixels arranged in a square.

.

Figure 3. A binary image is represented as a combination of
square tiles.

Figure 2. A binary image and its negative.

With cell decomposition, when we need to add a pixel

to the image, we add its vertices first, then the edges, and

finally the face of the pixel itself. This makes re-

computing the topology easier than one that adds a whole

pixel at once. Indeed, consider the fact that the new pixel

is adjacent to 8 other pixels (the 8-connectedness) and

these 8 pixels may belong to up to 4 different components.

The result is that the number of cases to consider is quite

high. Meanwhile, if an edge is added instead, the vertices

are already present. The result is that there are only 4 cases

to consider. The new edge may

1. link two components to each other on the outside,

2. link a component to another component inside its

hole,

3. complete a hole in a component, or

4. break a hole into two.

Which of these events occurs is determined based on the

local information (Figures 12-15).

The cell decomposition also makes certain geometric

concepts more straightforward. First, an object and its

background don’t share pixels, only edges. As a result, the

area of a component plus the area of the complement is

exactly the total area of the image. Second, the perimeter

isn’t the number of pixels in its boundary but the number

of edges.

At this point we provide a formal definition of the main

concept of cell decomposition. Any collection γ of 0-, 1-,

and 2-cells is a cell complex provided

 if γ contains an edge (1-cell) then γ contains its end

points (0-cells) as well, and

 if γ contains a face (2-cell) then γ contains its

edges (1-cells) as well.

We will refer to the cell complex of the whole rectangle as

the carrier.

Notice that we allow a cell complex to contain vertices

and edges that are not parts of faces. The reason for this is

the incremental algorithm we propose adds a pixel to the

image by adding its vertices, edges, and face (in that

order) and we want to treat this collection of cells as a cell

complex at every step.

Cell decomposition of the union of black pixels in a

binary image produces a cell complex. We will call it the

cell complex of the image.

4. Using cycles to capture topological features

in binary images

Both components and holes are captured by cycles. In a

cell complex,

 a 0-cycle is any collection of vertices;

 a 1-cycle is any collection of circular sequences

of edges.

Thus a k-cycle is a collection of k-cells [11].

We will concentrate on two special kinds of cycles:

 a 0-cycle that follows the outer boundary of a

connected component,

 a 1-cycle that follows the outer boundary of a

hole.

We will call then generator cycles. As they are the only

ones we will deal with, we will refer to them as simply

cycles.

Observe that every 0-cycle of this kind can be

represented by a 1-cycle, except in the case of a single

vertex component. This is the approach we adopt in the

following.

A 0-cycle is traversed clockwise (on the outside of the

object like a rubber band) and a 1-cycle is traversed

counterclockwise. In the either case black is on the right

and white is on the left.

Given a cell complex, any cycle can be traversed by

taking left turns from the initial edge in such a way that

black pixels are always on the right - until this edge is

reached again. This fact is used in the analysis algorithm.

This approach results in a natural and unambiguous

representation of the regions by means of the curves that

enclose them (cf. [15]).

The result of this topological analysis is a partition of

the binary image. This partition is a collection of non-

overlapping regions, connected sets of black pixels and

connected sets of white pixels, that covers the whole

image. The partition is achieved by finding boundaries of

these regions as 0- and 1-cycles.

Knowing the boundaries of the objects allows us to

compute their areas, moments, centroids, etc via Green’s

Theorem.

Figure 5. The objects and the holes are captured by cycles. Here A
and B are 0-cycles (red), C and D are 1-cycles (green).

Figure 6. Left: a 0-cycle. Right: a 1-cycle.

5. A graph representation of the topology of a

binary image

First we consider a graph representation for the

topology of a cell complex. It has the following simple

structure. Every node represents a cycle. If an object has a

hole, there is an arrow connecting these two cycles to

indicate the inclusion. For convenience, we add a node for

the whole rectangle (carrier). It is a direct successor of all

0-cycles.

Carrier

A B

C D

Carrier

A B

C D

This data structure is entirely adequate to capture the

topology of the cell complex. Our interest is however the

whole binary image. The suggested data structure does not

distinguish between an object and an object inside a hole

in another object. To capture this information, we need the

graph to contain this information.

The topology graph of a binary image is a directed

graph. Its nodes correspond to the cycles (objects and

holes) in the cell complex of the image and the arrows

correspond to inclusions of these sets. More precisely,

 if an object has a hole, there is an arrow from the

latter to the former, and

 if a hole has an object in it, there is an arrow from

the latter to the former.

In addition, there is an arrow from every object to the

carrier.

Thus, the topology graph captures not only the topology

of the cell complex of the image but also the way this

complex fits into the complex of the carrier.

The first part of the analysis algorithm is building the

topology graph.

The algorithm is incremental. Starting with the empty

image, pixels, one by one, are added. More precisely, a

cell complex is maintained and cells are added to this cell

complex as follows: vertices of the pixel first, then its

edges, unless those are already present as parts of other

pixels, and finally the face of the pixel. One of the

alternative approaches is to add all vertices first, then all

edges, then all faces.

The cell complex grows following this order:

1. the empty cell complex,

2. the cell complex of the image,

3. the carrier.

These three cell complexes will be called frames of the

image. Besides these, the cell complex passes through

intermediate stages. The cycles of the frames are called

principal cycles and the rest are auxiliary cycles.

Instead of the topology graph we build the augmented

topology graph, or simply the augmented graph, of the

image. As the new pixels are added, components merge,

holes split, etc. Adding a new vertex creates a new

component and a new node in the graph. Adding a new

edge may connect two components, or create, or split a

hole. Adding the face eliminates the hole. The information

about these changes is recorded in a graph. Each node in

the graph represents a cycle. The directed arrows that

connect the nodes represent the merging and the splitting

of the cycles.

The augmented graph is an acyclic directed graph

which is not a tree. The degrees are 1 or 2.

The topology graph can be extracted from the

augmented graph by removing all auxiliary nodes and

adding arrows between the principal nodes accordingly.

The second part of the algorithm is filtering of the

principal cycles based on their characteristics such as size,

location, etc.

The filtering criteria for binary images should be set in

such a way that it would be impossible to remove an

object while preserving a hole in it. Removing objects and

holes with the area below a given threshold is such a

criterion provided the area is computed as the area inside

the corresponding cycle rather than the actual area of the

object.

The remaining principle cycles represent the simplified

topology of the image. We will call them active cycles.

6. Example

Before we present the pseudocode of the algorithm in

the next section, we consider an extremely simple example

– analysis of a single pixel image.

Figure 7. A graph representation of the topology of the cell

complex in Figure 5, another cell complex with this

representation, the topology graph of this image.

The process consists of 9 steps corresponding to the 9

items to be added.

The construction of the image is represented by the

augmented graph. The nodes of this graph correspond to

the cycles and the arrows correspond to merging and

splitting of the cycles. Each arrow is accompanied by a

number indicating which item is being added.

0 A

E H

0 B

F G

0 C

I 0

0 D

5

5

6

7

6

7
8

8 9

1

2

3

4

At the first stage we have 4 nodes, corresponding to the

0-cycles. Then they merge into one. This 0-cycle splits

into two cycles, a 0-cycle and a 1-cycle. Finally, this 1-

cycle disappears. The end result is of course just the last

existing 0-cycle, H. The topology graph is H → Carrier.

Now, suppose the image consists of two black pixels on

white background. Then the construction of the augmented

graph starts with adding the first pixel, as above. Next, if

the second pixel isn’t adjacent to the first, the second stage

looks exactly the same as the first. It ends with a single

cycle, H’. In this case the augmented graph consists of

these two parts connected to the carrier.

… H

E' H'

0 B'

G'

0 C'

I' 0

3

3

4

4
5

5 6

1

2

If the second pixel is adjacent to the first, the

augmented graph continues to grow beyond H. There are 6

steps. Initially only H, the 0-cycle created during the first

stage, is present. Then, two new vertices are added

creating two new 0-cycles, B’ and C’. Then two edges are

added and these three cycles merge. When another edge is

added, a 1-cycle appears. Adding the face removes this

cycle. Only one 0-cycle is left, H’. It corresponds to the

two pixel object.

7. The pseudocode of the algorithm for binary

images

 A crucial part of the algorithm is the correspondence

between edges and cycles. Each directed edge is given by

the coordinates of its initial point and the direction: left,

right, up, down. For convenience, vertices are recorded as

edges with 0 direction. Then this correspondence takes the

form of a table, T, so that for every directed edge E, T(E)

is the cycle that passes through E. This table is updated at

every step of the algorithm.
//---

ImageAnalysis with binary image I

FOR all black pixels P in I

 CALL AddPixel with P

ENDFOR

Add all nodes with no descendants to the list

of principal cycles

FOR all white pixels P in I

 CALL AddPixel with P

ENDFOR

Add the carrier to the list of principal cycles

FOR all principal cycles C

 IF Evaluate(C) == 1 and

 Add C to the list of active cycles

 ENDIF

ENDFOR

//---

Cycles can be evaluated based on their measurements:

area, perimeter, roundness, etc. The most typical is the

area, as below. Here MinArea is the lowest area set by the

user.
//---

Evaluate with cycle C

IF the area enclosed by C < MinArea THEN

 RETURN 0

Figure 8. Adding a stand-alone pixel requires 9 steps: adding 4 vertices,

4 edges, and one face.

.

.

Figure 11. The augmented topology graph: adding the second

(adjacent to the first) pixel to the image. This graph is attached to the
graph in Figure 10.

Figure 10. A graph representation of the 9 steps required to add a
stand-alone pixel.

Figure 9. The stages of adding a single pixel to a blank image. The

0-cycles are in red and the only 1-cycle is in green.

ENDIF

RETURN 1

//---

Next is the operation of adding a pixel. It includes

adding its vertices, its edges, and then the face of the pixel.

Adding an edge means assigning cycles to both of the

directed edges – forward E and backward -E. After all the

edges have been added, there is always a 1-cycle inside

the pixel. It is “removed” as the face closes the hole.
//---

AddPixel with pixel P

CALL AddVertex with upper right vertex of P

CALL AddVertex with upper left vertex of P

CALL AddVertex with lower right vertex of P

CALL AddVertex with lower left vertex of P

CALL AddEdge with lower edge of P

CALL AddEdge with right edge of P

CALL AddEdge with upper edge of P
CALL AddEdge with left edge of P

E = lower edge of P directed counterclockwise

CALL RemoveCycle with 1-cycle A = T(E)

//---

Adding a vertex is trivial. It creates one new 0-cycle

represented by a node that isn’t connected to anything yet.

But first you verify that the vertex isn’t already present.
//---

AddVertex with vertex V

IF V is present THEN

 RETURN

ENDIF

Mark V as present

Call CreateCycle with V RETURNING 0-cycle A

//---

Adding an edge is the most complex step. There are

four cases illustrated in Figures 12-15. Which case occurs

is determined following the information in the

correspondence table T.
//---

AddEdge with edge E

IF T(E) != NULL or T(-E) != NULL THEN

 RETURN

ENDIF

CALL NextEdge with E RETURNING edge E1

A = T(E1)

CALL NextEdge with –E RETURNING edge E2

B = T(E2)

IF A == B THEN

 CALL SplitCycle with E1, E2, and A

ELSE

 CALL MergeCycles with E1 and A, B

ENDIF

//---

Figure 12. Case (a): the new edge connects two different 0-cycles.

Figure 13. Case (b): the new edge connects a 1-cycle and a 0-cycle.

Figure 14. Case (c): the new edge connects a 0-cycle to itself.

Figure 15. Case (d): the new edge connects a 1-cycle to itself.

A 0-cycle can merge with either 0- or 1-cycle: case (a)

or (b).
//---

MergeCycles with cycles A, B and edge E

CALL CreateCycle with E RETURNING cycle C

CALL MarkEdges with E and C

Add arrows from A, B to C to the graph

//---

Either a 0- or 1-cycle can split: case (c) or (d).
//---

SplitCycle with edges E1, E2 and cycle A

CALL CreateCycle with E1 RETURNING cycle C

CALL CreateCycle with E2 RETURNING cycle D

CALL MarkEdges with E1 and C

CALL MarkEdges with E2 and D

Add arrows from A to C, D to the graph

//---

 Creating a cycle means adding a new node to the graph.
//---

CreateCycle with edge E

Create node A in the graph

T(E) = A

RETURN A

//---

 Removing a cycle means assigning NULL to all of its

edges.
//---

RemoveCycle with cycle A

FOR all edges E in I

 IF T(E) == A THEN

 T(E) = NULL

 ENDIF

ENDFOR

//---

 Given an edge of a cycle, one can find the next edge of

the cycle.
//---

NextEdge with edge E

Start points of edges E1, E2, E3, E4 = end point

of E

Direction of E1 = direction of E + 90 degrees

Direction of E2 = direction of E

Direction of E3 = direction of E - 90 degrees

Direction of E4 = - direction of E

FOR edge G = E1, E2, E3, E4

 IF T(G) != NULL

 RETURN G

 ENDIF

ENDFOR

//---

 Next function goes around a given cycle and assigns its

value to the edges.
//---

MarkEdges with edge E and cycle A

CALL NextEdge with edge E RETURNING edge G

WHILE G != E

 T(G) = A

 CALL NextEdge with edge G RETURNING edge G

ENDWHILE

IF the full turn is clockwise THEN

 A is a 0-cycle

ELSE

 A is a 1-cycle

ENDIF

//---

8. The topology of a gray scale image

In a gray scale image every pixel is associated a number

indicating the gray level. These numbers run from 0 to L-

1, where L is usually 256 (L=2 for binary images). One

can also think of it as a function of two variables, the gray

level function, defined on a rectangle [0, N) × [0,M).

 Even though topology of binary images is well

understood [11], [7], [15], the methods are not directly

applicable to gray scale images. The method suggested

above however is fully applicable with minor changes.

The gray level function is a function from a rectangle to

the set {0, 1,…, L-1} which is constant on each square [n,

n + 1) × [m, m + 1).

Given a number T, thresholding replaces all the pixels

with gray level lower than or equal to T with black leaving

the rest white.

The output of thresholding is a binary image. However,

because of the loss of information during thresholding,

this binary image cannot always serve as an adequate

replacement of the original gray scale image. Below are

two examples of images for which a single threshold

wouldn’t work.

We justify our approach to analysis of the topology of

gray scale images in two ways. First we appeal to analysis

of binary images in the previous sections and second to

prior research on the subject.

In binary images objects are either connected black

areas surrounded by white background or connected white

areas surrounded by black background. Similarly, our

initial assumption about gray scale images will be that

objects are either darker areas surrounded by lighter

background or lighter areas surrounded by darker

background. We propose the following terminology:

 a dark object is a connected component of a lower

level set and

 a light object is a connected component of an upper

level set of the gray level function.
 This approach is in agreement with the following gestalt

principle (Werthheimer’s contrast invariance principle)

[6]:

Image interpretation does not depend on actual

values of the gray levels, but only their relative

values.

This principle suggests that one should look at the level

sets of the gray scale function, as well as lower and upper

level sets.

A related principle is discussed in [16]:

Figure 17. A gray scale image and its gray level function. The gray
on the left is the same as on the right. Therefore no single threshold

will capture both squares.

Figure 18. The gray of the ridges inside the green circle is close to

the gray between the ridges inside the red circle. Therefore no single
threshold will capture all ridges.

We assume our sensor is such that each pixel knows

only if it is brighter, equal, or darker than its

neighbor pixels, and that these comparisons can be

propagated.

The conclusion is that the lower and upper level sets of the

gray scale function should serve as the main building

blocks in image segmentation. This conclusion is justified

by the analyses conducted in [1], [16], [7].

As the objects are the lower and upper level sets, the

boundaries of the objects are the level curves of the gray

level function. Since all of these sets are connected

collections of pixels they can be represented as 0- and 1-

cycles, as before.

 At this stage the analysis does not have unambiguous

results. Let’s consider the image below as an example.

It may seem clear that in the above image there are two

objects and the first one has two holes. However, one may

choose different thresholds for different level curves. The

choice of these thresholds may affect the topology of the

resulting image, as illustrated in Figure 20 below. All

three outcomes are equally valid.

Therefore the analysis has to include the following two

stages:

Stage 1. Collect all possible objects in all binary images

obtained via thresholding for every value of T from 0 to L.

We will call these images frames.

Stage 2. Filter these objects to resolve the ambiguity. The

result is the list of active cycles.

 To ensure that the ambiguity is resolved properly we

will adhere to the following “2D uniqueness principle”:

If a dark object contains another dark object, only

one of them is taken into account.

A similar principle is used for light objects. Both are

vacuously true for binary images. This principle

guarantees that the active cycles you cross (from inside

out or from outside in) will alternate: 0-cycle, 1-cycle, 0-

cycle, 1-cycle…

The justification for this principle lies in the fact that in

2D there can be no object in front of or behind another.

So, either the larger object is the background for the

smaller one or the smaller object is noise over the larger

one. An object can have a hole in it however.

Stage 2 may include applying user’s criteria of what is

and what is not important in the image. Some specific

criteria are discussed in Section 9.

The result of the analysis is an image segmentation: the

active cycles partition the image into regions each of

which is identified as one of the following:

 a dark object,

 a light object, or

 the background.

This segmentation satisfies the following properties:

 The outside border of a dark object is a 0-cycle. On

the outside lies either a light object or the

background.

 The outside border of a light object is a 1-cycle. On

the outside lies either a dark object or the

background.

9. A graph representation of the topology of a

gray scale image

The collection of all possible cycles is organized in a

graph. Its structure is very similar to that of the topology

graph of a binary image. Indeed, the collections of cycles

of the frames are arranged in layers within the graph. Each

Figure 19. The blurred version of the image in Figure 5.

Figure 20. Each choice of thresholds produces a different topology.
First: two dark objects, one with a hole – light object, another light

object is a hole in the background. Second: two dark objects, one
with two holes – light objects. Third: two dark objects with no

holes.

Figure 21. The circle may be noise (small size) or the square may be

background (low contrast).

of these cycles encircles a dark object from the outside or

a light object from the inside.

The nodes of the topology graph of a gray scale image

correspond to light and dark objects of the image and the

arrows indicate inclusions. More specifically,

 there is an arrow from every dark (light) object to

a dark (light) object that contains it if they

correspond to consecutive gray levels,

 there is an arrow from every dark (light) object to

a light (dark) object that contains it if they

correspond to the same gray level.

The topology graph may be a tree, as in Figure 22, but

generally it isn't (Figure 23).

D C A B

F E

Carrier

5

5

6

7

6

7
8

8 9

1

2

3

4

3

3

4

4
5

5 6

1

2

The proposed algorithm is incremental: the layers are

added one at a time. Every time we increase the threshold

for the upper and lower level sets, there are six kinds of

events that can (along with their combinations) happen to

the connected components of these sets:

1. a dark object grows,

2. a light object shrinks,

3. a dark object appears,

4. a dark object forms a hole (a light object) inside,

5. two dark objects merge,

6. a light object splits.

The last three events change the topology of the image

(see Figures 12-15). Recorded in the topology graph, these

events are the reason why it is not a tree.

Just as with binary images, instead of the topology

graph we build the augmented topology graph, or simply

the augmented graph, of the image. The growing threshold

creates a partial order on the set of pixels. In that order the

pixels are added to the image. The procedure of building

this graph with nodes representing cycles is exactly the

same as the one presented in Section 5. The frames

generate principal cycles and the rest are auxiliary cycles.

The topology graph can be extracted from the augmented

graph by removing all auxiliary nodes and adding arrows

between the principal nodes accordingly.

Let’s consider an example. Suppose the image consists

of two adjacent pixels, black and gray, on white

background. Then the construction of the augmented

graph is exactly the same as described in Section 6. The

topology graph is simply H → H’ → Carrier. Now, H’

contains H. Therefore only one of them should be active.

Which one? Depending on the settings, the larger object

(H’) may be preserved or the one that is more round (H).

The algorithm for binary images is the process of

adding pixels one by one while keeping track of changes

in the topology. The same approach applies to gray scale

images. In fact all pixels in the image are added in either

case. The operation of adding a pixel and all functions it

calls are exactly the same as in the case of a binary image

(Section 7). The main difference is that there are L+1

frames instead of 3.

As some of the principal cycles are discarded, the

remaining ones will represent the simplified topology of

the image. If the uniqueness principle stated in Section 8 is

followed, the output of the filtering step is a kind of

topological sorting of the graph. Examples of image

simplification based on filtering of lower and upper level

sets are presented in [16] and [1].
//---

ImageAnalysis with gray scale image I

FOR all thresholds T = 0, …, L-1

 FOR all pixels P in I

 IF the value of P <= T THEN

 CALL AddPixel with P

 ENDIF

 ENDFOR

 Add all nodes with no descendants to the list

of principal cycles

ENDFOR

FOR all principal cycles C

IF Evaluate(C) == 1 and C does not have a

direct predecessor D such that C and D are

both k-cycles and Evaluate(D) == 1 THEN

 Add C to the list of active cycles

 ENDIF

ENDFOR

//---

In this particular implementation of the algorithm, the

objects are filtered based on their areas: objects with areas

smaller than a certain threshold are considered noise.

Since we measure the area of the inside the cycle that

surrounds the object, it is easy to satisfy the uniqueness

principle stated in Section 8. Indeed, since every successor

of an object has higher area, we only need to check

object’s direct predecessors. Other measurements that can

be used in such a simple fashion are the total intensity, the

integrated optical density and similar.

Figure 23. An image and its topology graph, which is not a tree.

Here A is the complement of the face and F is the complement of

the mouth.

Figure 22. An image and its topology graph (L=3). Here the objects

are: mouth E (black), head B (gray), eyes C and D (light gray).

E

C B D

Carrier

5

5

6

7

6

7
8

8 9

1

2

3

4

3

3

4

4
5

5 6

1

2

What if the area is replaced with contrast? By the

contrast of a dark object, we understand the difference

between the highest gray level adjacent to the object and

the lowest gray level within the object (similar for light

objects). Unlike the area, the contrast can go up and down

as we move from a lower level set to the next. Therefore

the filtering step cannot be carried out by checking only

the direct predecessors and successors, as with the area,

and a whole graph search may be necessary. Notice that

the contrast of an object is exactly its persistence [8] with

respect to the sequence of frames.

Objects can be evaluated and filtered based on any

combination of their measurements and other

characteristics such as location. Many filtering criteria

have been proposed (e.g. [4], [9], [18]). All of them are

also applicable to filtering the topology graph.

10. Comparison of the topology graph to tree

representations

Other approaches to graph representation of gray scale

images based on the lower and upper level sets have been

proposed in [1], [16] (and for 3D simplicial meshes in [5]).

Below we compare the topology graph to these two

representations. Both are trees.

First consider the method in [16]. Suppose we change

the threshold from 0 to 255. Then, the connected

components of lower level sets form a tree of growing

sets. Similarly, the components of the upper level sets

form a tree of shrinking sets. In either case, there are

layers in the tree corresponding to the gray levels.

The goal is to combine the two trees. The answer

suggested in [16] is to consider the tree formed by

connected components of the level sets. As levels sets

correspond to lower and upper level sets, the end result is

the “merged inclusion tree”.

Because of the way they are merged, the structures of

the two inclusion trees are lost. In particular, the lower

level sets are mixed with the upper level sets. In addition,

the gray levels are also mixed. Observe that losing this

information makes it impossible to filter nodes by

checking only the direct predecessors. Of course, the

algorithm can be modified to preserve the relations

between the lower level sets and the relations between

upper level sets. The result would be the topology graph.

In fact, the topology graph can be seen as an alternative

way of combining the lower and upper inclusion trees. The

latter is turned upside down and attached to the former.

To summarize, the structure of the topology graph of a

gray scale image differs from that of the merged inclusion

tree in a number of ways:

 The lower and upper inclusion trees remain intact

within the graph.

 The graph breaks into layers that coincide with of

the topology graphs of the corresponding frames.

 The topology graph is not a tree in general.
In [1], the tree structure appears as morphological

openings and closings of larger and larger scale are

applied to the image. In other words, the minima and

maxima of the gray scale function are flattened - slice by

slice. The result is a hierarchy of lower and upper level

sets that is recorded as a “scale tree”. Their example is

below.

Figure 26. This diagram illustrates the structure of the topology

graph of a gray scale image. Only some of the links connecting

the nodes corresponding to the same gray level are shown.

Figure 25. This diagram illustrates the merged inclusion tree. In this

tree there are no layers corresponding to the levels of gray anymore.

Figure 24. This diagram illustrates the lower inclusion tree and

the upper inclusion tree. The red are the lower level sets (dark)
and the green are the upper level sets (light). In both trees the

layers correspond to the levels of gray.

11. Complexity of the algorithm

 Suppose N is the number of pixels in the image.

The memory usage is O(N). Indeed, there are two main

data structures: cycles and edges. As adding a pixel creates

no more than 9 nodes in the augmented graph, there are

O(N) cycles. There are also O(N) edges in the image.

During the construction of the topology graph, each of

the N pixels is processed separately and each time at most

9 new objects are created. The edges of the boundaries of

some of these objects are marked, which can be done in

O(N). Therefore, the complexity of this part of the

algorithm is at most O(N
2
).

As we go through the levels of gray in the image in

Figure 28, the objects grow and fill the image. The

boundary of each has to be traversed. Then the total

number of edges to be visited is, roughly, 1+2+3+…+N,

which adds up to O(N
2
). Therefore, the complexity of the

algorithm is in fact O(N
2
).

Such an image may seem unusual but images of maps

and microchips may fall into this category. Images of cells

or other particles do not.

Suppose the image in Figure 28 is not quantized. Then

the above analysis of the complexity of the algorithm

applies to any other algorithm that traces all level sets in

the image. This is the case with the fast level line

transform [16] (step 4a). Therefore its complexity is

O(N
2
), not O(NlogN) as claimed.

Regardless of the design of the algorithm, tracing the

level sets is necessary in order to compute the perimeters

of lower and upper level sets. Only then they can be

filtered based on their shapes.

The complexity of filtering the graph is O(N).

The algorithm was tested with a variety of images. The

processing included:

 constructing the topology graph,

 computing various measurements of all objects,

 filtering the objects based on these measurements

and user’s settings.

The testing was done on HP Pavilion laptop with Intel

Core 2 Dual CPU T7500 2.2GHz.

The diagram below provides an estimate for the

processing time for natural images of reasonable size.

For this range of sizes, the dependence appears close to

linear. In this case, the processing takes, roughly, 40

seconds for each million pixels in the image. The results

suggest that the algorithm is practical.

The performance of the algorithm presented in this

paper is sacrificed for the sake of simplicity. One can

expect that faster algorithms will be developed.

12. Experiments

 To further demonstrate the practicality of the algorithm,

we analyze a few simple images.

During processing, the areas, perimeters, and contrasts

of the objects are also computed. These parameters are

used to filter objects. The user indicates ranges of

parameters of the features he considers to be irrelevant or

noise.

Figure 29. The processing time as a function of the image size.

Figure 27. An image and its scale tree. Its topology graph is in

Figure 22.

 Figure 28. Left: the “comb”. Its perimeter is O(N). Right: one of its

lower level sets.

 The settings may be chosen based on a priori

knowledge about the image. For example, the image in

Figure 30 is 300×246. To capture the coins and ignore the

noise and the small features depicted on the coins, one sets

the lower limit for the area at 1000 pixels.

 A good test of robustness of an image analysis method

is the degree of its stability under rotations. The output for

the original 640×480 fingerprint in Figure 33 is 3121 dark

and 1635 light objects. For the rotated version, it is 2969-

1617. The errors are about 5% and 1%. By limiting the

analysis to objects with area above 50 pixels, the results

are improved to 265-125 and 259-124, respectively (2%

and 1%). This test shows that even though the algorithm is

sensitive (as is the image itself) to rotations, the error is

reasonable and decreases as the objects get larger.

An example of image simplification based on filtering

of the topology graph is in Figure 34, below.

 Stretching the image does not affect the count of

objects. Shrinking makes objects merge. If the goal,

however, is to count and analyze larger features, limited

shrinking of the image does not affect the outcome. The

count is also stable under noise and blurring.

 The method works best with images that represent

something 2-dimensional. It is not applicable to the

images for which the third dimension is essential. For

example, the method fails when the image contains:

 occluded objects,

 transparent objects,

 objects well lit on one side and dark on the other.

The method does not incorporate any morphological

operations. As a result, scratches can’t be repaired or

clustered cells can’t be separated unless there is a variation

of intensity.

13. Conclusions and further research

 The method proposed in this paper is well grounded in

classical mathematics and produces meaningful results for

various gray scale images. Its speed and memory

requirements make it practical for every-day use on

today’s personal computers.

One of the proposed innovations is that the topology of

a gray scale image is represented by a graph, which is not

a tree in general.

The main issue still to be addressed is the issue of

merging objects based on similarity and proximity rather

than relative gray levels.

A modification of the algorithm applies to color images

and other multi-parameter images. It is possible to

threshold an RGB image so that a binary image (frame) is

created for each combination of red, green, and blue. The

cycles from these frames form the topology graph of the

color image.

The ability to remove pixels in addition to adding pixels

makes the algorithm track objects in a binary video. The

same approach is applicable to sequences of

morphological operations applied to a given binary image.

Figure 34. An MRI of breast tissue and its version with all low

contrast objects removed.

Figure 33. The image of a fingerprint and its rotated version.

Figure 32. The coins are captured in the version of the coins

with salt-and-pepper noise.

Figure 31. The coins are captured in the blurred version of the

coins.

Figure 30. The coins are captured.

To develop a similar method for representation of the

topology of 3D (and higher-dimensional) images one will

follow the same pattern: decompose the image into 0-, 1-,

2-, and 3-cells, then capture the topology with 0-, 1-, 2-,

and 3-cycles, combine them into homology classes, and

record the hierarchy of these classes as a graph.

The following is a summary of characteristics of the

proposed approach:

 The approach and the method are justified by

appealing to classical mathematics.

 The new representation of the topology of a gray

scale image ensures that components and holes are

treated in a unified way and yet kept separate.

 The new algorithm and its interpretation are simple

and easy to understand.

 The algorithm is practical.

 The algorithm is incremental and as such can be

easily generalized to analysis of color images and

video.

References

[1] J. A. Bangham, J. R. Hidalgo, R. Harvey, and G. C. Cawley,

The segmentation of images via scale-space trees, British

Machine Vision Conference, pp. 33-43, 1998.
[2] Y. Bertrand, C. Fiorio, and Y. Pennaneach, Border map: a

topological representation for nD image analysis. In 8th

International Conference on Discrete Geometry for

Computer Imagery (DGCI'1999), Marne-la-Vallée, France,

Springer, Lecture Notes in Computer Science, Vol. 1568,

pp. 242-257, 1999.

[3] G. Bredon, Topology and Geometry, Springer, 1993.

[4] E. J. Breen and R. Jones, Attribute openings, thinnings, and

granulometries, Computer Vision and Image

Understanding, Vol. 64, no. 3, pp. 377-389, 1996.

[5] H. Carr, J. Snoeyink, and U. Axen, Computing contour trees

in all dimensions, Computational Geometry, 2003.

[6] A. Desolneux, L. Moisan, and J.-M. Morel, From Gestalt

Theory to Image Analysis, A Probabilistic Approach,

Springer, 2007.

[7] G. Damiand, Y. Bertrand, C. Fiorio, Topological model for

two-dimensional image representation: definition and

optimal extraction algorithm, Computer Vision and Image

Understanding, Vol. 93, no. 2, pp. 111-154, 2004.

[8] H. Edelsbrunner, D. Letscher, and A. Zomorodian,

Topological persistence and simplification. Discrete

Comput. Geom., Vol. 28, pp. 511-533, 2002.

[9] R. Jones, Connected filtering and segmentation using

component trees, Computer Vision and Image

Understanding, Vol. 75, no. 3, pp. 215-228, 1999.

[10] T. Kaczynski, K. Mischaikow, and M. Mrozek,

Computational Homology, Appl. Math. Sci., Vol. 157,

Springer, 2004.

[11] L. C. Kinsey, Topology of Surfaces (Undergraduate Texts in

Mathematics), Springer, 1997.

[12] R. Klette and A. Rosenfeld, Digital Geometry. Morgan

Kaufmann, 2004.

[13] S. Kundu, Peak-tree: a new approach to image

simplification, Proc. SPIE Vision Geometry VIII, Vol.

3811, p. 284-294, 1999.

[14] P. Lienhardt, Topological models for boundary

representation: a comparison with n-dimensional

generalized maps, Computer-Aided Design, 23(1), pp. 59-

82, 1991.

[15] R. Malgouyres and M. More, On the computational

complexity of reachability in 2D binary images and some

basic problems of 2D digital topology, Theoretical

Computer Science, Vol. 283/1, no 1, pp 67-108, 2002.

[16] P. Monasse and F. Guichard, Fast computation of a contrast

invariant image representation. IEEE Transactions on

Image Processing, 9(5), pp. 860–872, 2000.

[17] L. Najman and M. Couprie, Building the component tree in

quasi-linear time, IEEE Transactions on Image Processing,

Vol. 15, no. 11, pp. 3531-3539, 2006.

[18] P. Salembier, A. Oliveras and L. Garrido, Antiextensive

connected operators for image and sequence processing,

IEEE Transactions on Image Processing, Vol. 7, no. 4, pp.

555-570, 1998.

[19] P. Salembier and J. Serra, Flat zones filtering, connected

operators, and filters by reconstruction, IEEE Transactions

on Image Processing, Vol. 4, no. 8, pp. 1153-1160, 1995.

