
11. Homology

A complex is a particular type of partially ordered set with
complementary properties designed to carry an algebraic
superstructure, its homology theory. Complexes thus appear as
the tool par excellence for the application of algebraic methods
to topology.

Solomon Lefschetz, 1942

Simplicial complexes enjoy good topological properties. Their combinatorial structure
is sufficiently rich via subdivision to capture the continuous mappings between realizations
of complexes up to homotopy. In Chapter 10 we developed these connections between the
combinatorial and the continuous. In this chapter we develop the combinatorial structure
further by defining algebraic structures associated to a complex that will be found to give
topological invariants. These invariants lead to a proof of the topological Invariance of
Dimension which is a generalization of the argument in Chapter 8 in which the fundamental
group played the key role for the case (2, n).

The algebraic structures will be finite dimensional vector spaces over the field with
two elements, F2

∼= Z/2Z. Let’s set some notation: If S is any finite set, then F2[S] denotes
the vector space over F2 with S as basis, that is, the set of all formal sums

∑
s∈S ass where

as ∈ F2. The sum of two such formal sums is given by∑
s∈S

ass+
∑

s∈S
bss =

∑
s∈S

(as + bs)s.

Multiplication by a scalar c ∈ F2 is given by c
∑

s∈S ass =
∑

s∈S cass. The reader can
check that these operations make F2[S] a vector space. If S and T are finite sets, and
f :S → F2[T ] is a function, then f induces a linear mapping f∗: F2[S] → F2[T ], given by

f∗

(∑
s∈S

ass
)

=
∑

s∈S
asf(s).

Since a linear mapping is determined by its values on a basis of the domain, this construc-
tion gives every linear mapping between F2[S] and F2[T ].

The quotient construction of a vector space by a linear subspace (Chapter 1) will
come up later, and we recall it here. Suppose W is a linear subspace of a vector space
V . The quotient vector space V/W is the set of equivalence classes of vectors in V
under the equivalence relation v ∼ v′ if v′ − v ∈ W . We denote the equivalence class of
v ∈ V by [v] or v +W . The addition and multiplication by a scalar on V/W are given by
(v+W )+ (v′ +W ) = (v+ v′)+W and c(v+W ) = cv+W . When V is finite-dimensional,
dimV/W = dimV − dimW .

In Chapter 9 we associated to a grating G the vector space of i-chains, Ci(G) =
F2[Ei(G)]. We can generalize that construction to a simplicial complex: Suppose K is a
simplicial complex (geometric or abstract). Partition K into disjoint subsets that contain
only nondegenerate simplices of a fixed dimension:

Kp = {S ∈ K | dimS = p and S is nondegenerate}.
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The index p varies from zero to the dimension of K. Each Kp is a finite set which forms
the basis for the p-chains on K,

Cp(K; F2) = F2[Kp], the vector space over F2 with basis Kp.

A typical element of Cp(K; F2) is a sum S1+S2+ · · ·+Sl, where each Si is a nondegenerate
p-simplex in K. When working over F2, recall that S+S = 2 ·S = 0 ·S = 0 in Cp(K; F2).

A simplicial mapping φ:K → L induces a linear mapping φ∗:Cp(K; F2) → Cp(L; F2)
defined on a p-simplex S = {v0, . . . , vp} by

φ∗({v0, . . . , vp}) =
{
{φ(v0), . . . , φ(vp)} if {φ(v0), . . . , φ(vp)} is nondegenerate in L,

0 if {φ(v0), . . . , φ(vp)} is degenerate in L,

and defined on a chain c = S1 + · · ·+ Sl by

φ∗(c) = φ∗(S1 + · · ·+ Sl) = φ∗(S1) + · · ·+ φ∗(Sl).

If we have two simplicial mappings φ:K → L and ψ:L → M , then the composite
ψ ◦ φ:K → M induces a mapping (ψ ◦ φ)∗:Cp(K; F2) → Cp(M ; F2) which satisfies the
equation (ψ ◦ φ)∗ = ψ∗ ◦ φ∗.

In Chapter 10 we introduced the face of a p-simplex S = {v0, . . . , vp} opposite a
vertex vi, given by the subset ∂i(S) = {v0, . . . , v̂i, . . . , vp} ⊂ S (the vertex under the
hat is omitted). Notice that if S is nondegenerate, then so is ∂iS. Define a mapping
∂:Kp → Cp−1(K; F2) by summing all of the (p−1)-faces of a p-simplex. The extension of ∂
to a linear mapping Cp(K; F2) → Cp−1(K; F2) is called the boundary homomorphism:

∂:Cp(K; F2) → Cp−1(K; F2) given by ∂(S) =
∑p

i=0
∂i(S), for S ∈ Kp.

Recall from Chapter 10 that bdy∆n[S] =
⋃p

i=0
∆n−1[∂i(S)]. The boundary homomor-

phism ∂ is an algebraic version of bdy, the topological boundary operation.
The main algebraic properties of the boundary homomorphism are the following:

Proposition 11.1. If φ:K → L is a simplicial mapping, then

∂ ◦ φ∗ = φ∗ ◦ ∂ : Cp(K; F2) → Cp−1(L; F2).

Furthermore, the composite ∂ ◦ ∂ : Cp(K; F2) → Cp−2(K; F2) is the zero mapping.
Proof: It suffices to check these equations for elements in a basis. Suppose that S =
{v0, . . . , vp} is a nondegenerate p-simplex in K. Then

∂ ◦ φ∗(S) = ∂({φ(v0), . . . , φ(vp)}) =
∑p

i=0
{φ(v0), . . . , φ̂(vi), . . . , φ(vp)}

=
∑p

i=0
φ∗({v0, . . . , v̂i, . . . , vp}) = φ∗

(∑p

i=0
{v0, . . . , v̂i, . . . , vp}

)
= φ∗ ◦ ∂(S).
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Next, we compute ∂ ◦ ∂(S).

∂(∂(S)) = ∂
(∑p

i=0
{v0, . . . , v̂i, . . . , vp}

)
=
∑

j<i

∑p

i=0
{v0, . . . , v̂j , . . . , v̂i, . . . , vp}+

∑
j>i

∑p

i=0
{v0, . . . , v̂i, . . . , v̂j , . . . , vp}.

Notice, for each pair k < l, the (p − 2)-simplex {v0, . . . , v̂k, . . . , v̂l, . . . , vp} appears twice,
once in each sum, and so ∂(∂(S)) = 0. ♦

The boundary homomorphism determines certain linear subspaces of Cp(K; F2): the
space of p-cycles,

Zp(K) = ker(∂:Cp(K; F2) → Cp−1(K; F2)) = {c ∈ Cp(K; F2) | ∂(c) = 0},

and the space of p-boundaries,

Bp(K) = ∂(Cp+1(K; F2)) = im (∂:Cp+1(K; F2) → Cp(K; F2))
= {b ∈ Cp(K; F2) | b = ∂(c), for some c ∈ Cp+1(K; F2)}.

The relation ∂ ◦ ∂ = 0 implies the inclusion Bp(K) ⊂ Zp(K).
For a p-simplex S, the boundary ∂(S) is a cycle that is the sum of the faces ∂i(S)

and together these make up the boundary of ∆p[S]. When faces come together like this,
but the simplex whose boundary they form is absent, we get a ‘p-dimensional hole’ in the
realization of the simplicial complex. The vector space of the essential cycles—holes not
filled in as the boundary of a higher dimensional simplex—is algebraically expressed as the
quotient vector space Zp(K)/Bp(K). This is the homology in dimension p of a simplicial
complex.
Definition 11.2. The pth homology (mod 2) of a simplicial complex K is the quotient
vector space for p > 0 given by

Hp(K; F2) = Zp(K)/Bp(K).

When p = 0, define H0(K; F2) = C0(K; F2)/B0(K).
To illustrate the definition, we compute the homology of the one-point complex, ∆0 =

{v}. In this case, the 0-chains have a single vertex {v} for a basis, and the boundary
homomorphism is zero. Since there are no other simplices, H0(∆0; F2) = F2[{v}], and
Hp(∆0; F2) = {0} for p > 0.

A slightly more complicated computation is the homology of a 1-simplex, ∆1 ∼= ∆1[S]
where S = {e0, e1}: the chains and boundary homomorphisms may be assembled into a
sequence of vector spaces and linear mappings:

{0} → C1(∆1; F2)
∂−→C0(∆1; F2) → {0} ⇐⇒ {0} → F2[{S}]

∂−→F2[{e0, e1}] → {0}.

Since ∂(S) = e0 +e1 6= 0, there is no kernel in dimension one, and the zero boundaries are
given by B0(∆1) = F2[{e0 + e1}]. Thus H0(∆1; F2) ∼= F2[{[e0]}] where the equivalence
class [e0] = e0 + F2[{e0 + e1}] is the coset of e0 in the quotient F2[{e0, e1}]/F2[{e0 + e1}].
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To generalize this computation to Hp(∆n; F2) for all n and p, we introduce a linear
mapping fashioned from the combinatorics of a simplex. Let S = {v0, . . . , vn} denote a non-
degenerate n-simplex. Consider the linear mapping ivn

:Cp(∆n[S]; F2) → Cp+1(∆n[S]; F2)
given on the basis by

ivn
({vi0 , . . . , vip

}) =
{ {vi0 , . . . , vip , vn} if {vi0 , . . . , vip , vn} is nondegenerate,

0 otherwise.

If {vi0 , . . . , vip
} is a nondegenerate p-simplex in ∆n[S], p > 0, and vn 6= vik

for all k, we
can compute

(∂ ◦ ivn + ivn ◦ ∂)({vi0 , . . . , vip})

= ∂({vi0 , . . . , vip
, vn}) + ivn

(
p∑

r=0

{vi0 , . . . , v̂ir
, . . . , vip

}

)

= {vi0 , . . . , vip}+
p∑

r=0

{vi0 , . . . , v̂ir , . . . , vip , vn}+
p∑

r=0

{vi0 , . . . , v̂ir , . . . , vip , vn}

= {vi0 , . . . , vip
}.

When S = {vi0 , . . . , vip−1 , vn}, then (∂ ◦ ivn + ivn ◦ ∂)(S) = S + U , where U is a sum
of degenerate (p + 1)-simplices which we take to be 0 ∈ Cp+1(K; F2). It follows that
∂ ◦ ivn

+ ivn
◦ ∂ = id, and if z is a p-cycle, then

z = (∂ ◦ ivn + ivn ◦ ∂)(z) = ∂(ivn(z)) ∈ Bp(K).

Hence, for p > 0, Zp(K) ⊂ Bp(K) ⊂ Zp(K) and so Hp(∆n[S]; F2) = {0}.
To compute H0(∆n[S]; F2), notice that ∂(ivn

(v)) = v + vn while ivn
(∂(v)) = 0. The

equation ∂ ◦ ivn
+ ivn

◦ ∂ = id does not hold, but we can deduce that vn + B0(∆n[S]) =
vi +B0(∆n[S]) for all i. Since Z0(∆n[S]) = C0(∆n[S]; F2) = F2[{v0, . . . , vq}], we have

H0(∆n[S]; F2) ∼= C0(∆n[S]; F2)/F2[{v + v′ | v 6= v′, v, v′ ∈ S}] ∼= F2[{vn +B0(∆n[S])}].

Notice that the homology of an n-simplex is isomorphic to the homology of a 0-simplex
for all n.

We collect the vector spaces of p-chains on ∆n for all p, together with the boundary
homomorphisms, to get a sequence of linear mappings

{0} → Cn(∆n; F2)
∂−→Cn−1(∆n; F2)

∂−→· · · ∂−→C1(∆n; F2)
∂−→C0(∆n; F2) → {0}.

From the formula ∂ ◦ ivn + ivn ◦ ∂ = id, we found that, for p > 0, Zp(∆n) = Bp(∆n).

In general, we say that a sequence of linear mappings V a−→W
b−→U is exact at W if

ker b = im a. In the case of the sequence of chains on ∆n, it is exact at Ci(∆n; F2) for
1 ≤ i ≤ n. In fact, the pth homology of a simplicial complex, Hp(K; F2) = Zp(K)/Bp(K),
measures the failure of the sequence of boundary homomorphisms to be exact at Cp(K; F2).
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The exactness of the sequence of chains on ∆n gives a method for the computation of
Hp(bdy∆n; F2). The set of simplices of bdy∆n contains all of the simplices of ∆n except
the n-simplex {e0, . . . , en}. We can present the sequence of vector spaces of chains and
boundary homomorphisms for bdy∆n as

{0} → Cn−1(∆n; F2)
∂−→Cn−2(∆n; F2)

∂−→· · · ∂−→C1(∆n; F2)
∂−→C0(∆n; F2) → {0}.

We know that the sequence is exact at Ci(∆n; F2) for 1 ≤ i ≤ n − 2, that the sequence
used to be exact at Cn−1(∆n; F2) and that Cn(∆n; F2) = F2[{e0, . . . , en}]. In the sequence
for bdy∆n, the vector space of (n − 1)-cycles Zn−1(bdy∆n) has dimension one. Since
Bn−1(bdy∆n) = {0}, we deduce that

Hp(bdy∆n; F2) ∼=
{

F2, if p = 0 or p = n− 1,
{0}, otherwise.

As we showed in Chapter 10, the realization |bdy∆n| is homeomorphic to Sn−1. Later we
will show how the homology of bdy∆n can be associated to the topological space Sn−1.

To a simplicial complex K we can associate a number based on the combinatorial
data of the simplices: Recall the subsets Kp ⊂ K given by the nondegenerate p-simplices
of K. Since K is a finite set, Kp is finite. Let np = #Kp, the cardinality of Kp. The
Euler-Poincaré characteristic of K is the alternating sum

χ(K) =
∑d

p=0
(−1)pnp,

where d denotes the dimension of K. This number was introduced by Euler in 1750 in a
letter to Christian Goldbach (1690-1764). Euler’s formula, v − e + f = 2, applies to
two-dimensional polyhedra that are homeomorphic to the sphere, but we are getting a little
ahead of the story. Here v = # vertices = n0, e = # edges = n1 and f = # faces = n2.
For example, for the tetrahedron, bdy∆3, we have v = 4, e = 6 and f = 4.

An extraordinary property of χ(K) is that it is calculable from the homology.

Theorem 11.3. If K is a simplicial complex with χ(K) =
∑d

p=0(−1)pnp, then χ(K) =∑d
p=0(−1)php, where hp = dimF2

Hp(K; F2).

Proof: By definition np = #Kp = dimF2
Cp(K; F2). There are other numbers associated

to the chains via the boundary operator. Let

zp = dimF2
ker(∂:Cp(K; F2) → Cp−1(K; F2)),

bp = dimF2
im (∂:Cp+1(K; F2) → Cp(K; F2)).

By definition hp = dimF2
Hp(K; F2) = dimF2

Zp(K)/Bp(K) = zp − bp. The fundamental
identity from linear algebra for linear mappings, that the dimension of the domain of a
mapping is equal to the dimension of its kernel plus the dimension of its image, implies
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that np = zp + bp−1. Manipulating these identities, we have

χ(K) =
∑d

p=0
(−1)pnp =

∑d

p=0
(−1)p(zp + bp−1)

= (−1)d(zd + bd−1) + (−1)d−1(zd−1 + bd−2) + · · ·+ (−1)(z1 + b0) + z0

= (−1)dzd + (−1)d−1(zd−1 − bd−1) + · · ·+ (−1)(z1 − b1) + (z0 − b0)

= (−1)dhd + (−1)d−1hd−1 + · · ·+ (−1)h1 + h0 =
∑d

p=0
(−1)php.

Thus, the number χ(K) is calculable from the homology of K. ♦

Poincaré generalized Euler’s formula by this argument in [Poincare] an 1895 paper
that established the importance of this circle of ideas.

Homology and simplicial mappings

Suppose φ:K → L is a simplicial mapping. Then φ induces a linear mapping of chains,
φ∗:Cp(K; F2) → Cp(L; F2), for which ∂ ◦φ∗ = φ∗ ◦ ∂. Suppose [c] = c+Bp(K) denotes an
element in Hp(K; F2). Then c ∈ Zp(K), that is, ∂(c) = 0, and ∂(φ∗(c)) = φ∗(∂(c)) = 0,
so φ∗(c) is an element of Zp(L). If c− c′ ∈ Bp(K), then φ∗(c− c′) = φ∗(∂(u)) = ∂(φ∗(u)),
for some u ∈ Cp+1(K; F2), and so φ∗(c) +Bp(L) = φ∗(c′) +Bp(L). Thus we can define

H(φ):Hp(K; F2) → Hp(L; F2) by H(φ)(c+Bp(K)) = φ∗(c) +Bp(L).

It follows from the properties of the induced mappings on chains that if ψ:L→M is
another simplicial mapping, then H(ψ ◦φ) = H(ψ) ◦H(φ). We note also that the identity
mapping id:K → K induces the identity mapping H(id) = id:Hp(K; F2) → Hp(K; F2) for
all p.

Although there are only finitely many simplicial mappings φ:K → L, there can be
other linear mappings Cp(K; F2) → Cq(L; F2), which, like ivn

, are defined using the fea-
tures of simplices which make up the bases. The following notion was introduced by
Lefschetz [Lefschetz1930].
Definition 11.4. Given two simplicial mappings φ and ψ:K → L, there is a chain
homotopy between them if there is a linear mapping h:Cp(K; F2) → Cp+1(L; F2) for each
p which satisfies

∂ ◦ h+ h ◦ ∂ = φ∗ + ψ∗.

Theorem 11.5. If there is a chain homotopy between φ and ψ, then H(φ) = H(ψ).
Proof: Suppose [c] = c+Bp(K) ∈ Hp(K; F2). Then

∂ ◦ h(c) + h ◦ ∂(c) = φ∗(c) + ψ∗(c).

Since ∂(c) = 0, φ∗(c) + ψ∗(c) = ∂(h(c)) ∈ Bp(L), that is, φ∗(c) + Bp(L) = ψ∗(c) + Bp(L)
and H(φ)([c]) = H(ψ)([c]). ♦

An important source of chain homotopies is the combinatorial notion of contiguous
simplicial mappings. Recall that simplicial mappings φ, ψ:K → L are contiguous if, for
any simplex S ∈ K, we have φ(S) ∪ ψ(S) is a simplex in L.
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Corollary 11.6. If φ and ψ:K → L are simplicial mappings, and φ is contiguous to ψ,
then H(φ) = H(ψ):Hp(K; F2) → Hp(L; F2) for all p.

Proof: Define the linear mapping h:Cp(K; F2) → Cp+1(L; F2) determined on the basis by

h({v0, . . . , vp}) =
∑p

i=0
{φ(v0), . . . , φ(vi), ψ(vi), . . . , ψ(vp)},

where we substitute the zero element whenever we have a degenerate simplex in the sum.
Since φ and ψ are contiguous, each summand of h({v0, . . . , vp}) is a simplex in L.

Then we can compute

(∂ ◦ h)(T ) = ∂(h(T )) = ∂
(∑p

i=0
{φ(v0), . . . , φ(vi), ψ(vi), . . . , ψ(vp)}

)
=
∑p

i=0

∑
j≤i
{φ(v0), . . . , φ̂(vj), . . . , φ(vi), ψ(vi), . . . , ψ(vp)}

+
∑p

i=0

∑
j≥i
{φ(v0), . . . , φ(vi), ψ(vi), . . . , ψ̂(vj), . . . , ψ(vp)}

(h ◦ ∂)(T ) = h(∂(T )) = h
(∑p

i=0
{v0, . . . , v̂i, . . . , vp}

)
=
∑p

i=0

∑
j<i
{φ(v0), . . . , φ(vj), ψ(vj), . . . , ψ̂(vi), . . . , ψ(vp)}

+
∑p

i=0

∑
j>i
{φ(v0), . . . , φ̂(vi), . . . , φ(vj), ψ(vj), . . . , ψ(vp)}

The differences between these expressions are the inequalities j < i and j ≤ i, and j > i
and j ≥ i. In the sum for ∂(h(T )) the summands that do not appear in h(∂(T )) are given
by the condition i = j:∑p

i=0
{φ(v0), . . . , φ(vi−1), ψ(vi), . . . , ψ(vp)}+ {φ(v0), . . . , φ(vi), ψ(vi+1), . . . , ψ(vp)}.

Each entry appears twice in the sum, except when i = 0 and i = p, leaving

{φ(v0), . . . , φ(vp)}+ {ψ(v0), . . . , ψ(vp)} = (φ∗ + ψ∗)({v0, . . . , vp}).

All of the summands in h(∂(T )) are cancelled by the rest of the summands of ∂(h(T )) and
so we have ∂ ◦h+h ◦ ∂ = φ∗ +ψ∗, a chain homotopy between φ and ψ. By Theorem 11.5,
H(φ) = H(ψ). ♦

By Lemma 10.19, Corollary 11.6 implies the following:

Corollary 11.7. If φ and ψ:K → L are simplicial approximations of a continuous
mapping f : |K| → |L|, then H(φ) = H(ψ):Hp(K; F2) → Hp(L; F2), for all p.

Since a single continuous mapping might have numerous simplicial approximations, when
the domain and codomain are held fixed, the induced mappings on homology by these
approximations are the same.
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Topological invariance

So far we have associated a sequence of vector spaces over F2 to a simplicial complex.
To fashion a tool for the investigation of topological questions, we need to associate ho-
mology vector spaces and linear mappings to spaces and continuous mappings. It would
be nice to do this for general topological spaces, but it is not clear that it is possible to
associate a finite simplicial complex to each space (it isn’t [Spanier]). We restrict our
attention to triangulable spaces, that is, spaces X for which there is a simplicial com-
plex K with X homeomorphic to |K|. For such spaces it would be natural to define
Hp(X; F2) = Hp(K; F2). However, a triangulable space can be homeomorphic to many
different simplicial complexes. For example, the sphere S2 is homeomorphic to the tetra-
hedron, the octohedron, and the icosahedron. It is also the case (Thoerem 10.12) that we
can subdivide a simplicial complex without changing its realization. How does homology
behave under subdivision?

We also want to associate to a continuous mapping f :X → Y , for each p ≥ 0 a linear
mapping H(f):Hp(X; F2) → Hp(Y ; F2). The natural guess is to take a simplicial approx-
imation φ: sdNK → L and define H(f) = H(φ). This definition is nearly well-defined
because two simplicial approximations to the same mapping are contiguous. However,
simplicial approximations to a single mapping can be constructed for which a different
number of barycentric subdivisions might be needed, or a different choice of representing
simplicial complexes might have been made and so it is not immediate that we have a good
definition.

To alleviate some of the problems here, we loosen some of the foundations to allow
a new precision. To allow different choices of a simplicial complex with realization home-
omorphic to X we can define Hp(X; F2) up to isomorphism, that is, do not associate a
particular vector space to X and p, but an equivalence class of vector spaces in which
a choice of simplicial complex determines a representative. The equivalence relation is
isomorphism, that is, we say that vector spaces V and V ′ are equivalent if there is a lin-
ear isomorphism α:V → V ′ between them. This relation on any set of vector spaces is
reflexive, symmetric, and transitive. We also define a relation between linear mappings
between equivalent vector spaces: if φ:V → W and φ′:V ′ → W ′ are linear mappings and
V is isomorphic to V ′, W is isomorphic to W ′, then we say that φ is equivalent to φ′ if
there is a diagram of linear mappings

V
φ−→ Wyα

yα′

V ′ −→
φ′

W ′

that is commutative, that is, α′ ◦ φ = φ′ ◦ α and α and α′ are isomorphisms. Once again,
this relation is reflexive, symmetric, and transitive and so we can take linear mappings
defined up to isomorphism as equivalence classes under this relation. Although we have
loosened up how we associate vector spaces and linear mappings to spaces and continuous
mappings, certain linear algebraic invariants remain meaningful, such as the dimension of
equivalent vector spaces, and the rank of equivalent linear mappings.
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With this notion of equivalence in mind, we establish the well-definedness of the
proposed definitions. The central problem that needs resolution is the comparison of the
homology of two simplicial complexes with the homeomorphic realizations. As a start, let’s
consider the relation between the homology of a space and its barycentric subdivision; by
Theorem 10.12 we know that |sdK| = |K|.
Theorem 11.8. There is an isomorphism of vector spaces H∗(sdK; F2) ∼= H∗(K; F2).
Proof: Recall the simplicial mapping λ: sdK → K, defined on vertices by “the last vertex,”

λ(β(S)) = λ(β({v0, . . . , vq})) = vq.

This mapping is a simplicial approximation to the identity, id: |sdK| → |K|. The simplicial
mapping λ induces a linear mapping of chains λ∗:C∗(sdK; F2) → C∗(K; F2).

To construct an inverse mapping to λ∗, we will not define another simplicial mapping,
but work explicitly with the chains. Since we have explicit bases for the vector spaces
of p-chains, it is possible to define linear mappings that do not necessarily come from a
simplicial mapping. One such combinatorial mapping is defined for a fixed choice of vertex
b ∈ sdK, and generalizes the mapping ivn

that figures in the computation ofHp(∆n[S]; F2).
Let ib:Cq(sdK; F2) → Cq+1(sdK; F2) be given on the basis by

ib({b0, . . . , bq}) =
{
{b0, . . . , bq, b}, when {b0, . . . , bq, b} is nondegenerate in sdK,

0, if {b0, . . . , bq, b} is degenerate or not in sdK.

The linear mapping ib has the following properties:

∂(ib(S)) = S + ib(∂(S)), and λ∗ ◦ iβ(S) = ibq
◦ λ∗, when S = {b0, . . . , bq}.

To prove these identities, we compute (where λ(β(Si)) = bωi
.)

∂(ib(S)) = ∂({b0, . . . , bq, b}) = {b0, . . . , bq}+
∑q

i=0
{b0, . . . , b̂i, . . . , bq, b}

= S + ib

(∑q

i=0
{b0, . . . , b̂i . . . , bq}

)
= S + ib(∂(S)).

λ∗ ◦ iβ(S)({β(S0), . . . , β(Sq−1)}) = λ∗({β(S0), . . . , β(Sq−1), β(S)})
= {λ(β(S0)), . . . , λ(β(Sq−1)), λ(β(S))}
= {bω(0), . . . , bω(q−1), bq}
= ibq

({bω(0), . . . , bω(q−1)})
= ibq ◦ λ∗({β(S0), . . . , β(Sq−1)}).

Using these identities, we define the mapping β∗:C∗(K; F2) → C∗(sdK; F2) by taking a
simplex S ∈ K to the sum of all the simplices in the barycentric subdivision of K that lie
in ∆q[S]. Explicitly we can write

β∗(S) =
∑

S0≺S1≺···≺Sq−1≺S
{β(S0), β(S1), . . . , β(Sq−1), β(S)}.
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However, this expression can be obtained more compactly by the recursive formula:

β∗(v) = v, if v is a vertex in K, β∗(S) = iβ(S) ◦ β∗(∂(S)) if dimS > 0.

For example, β∗({a, b}) = iβ({a,b})(β∗(a+ b)) = {a, β({a, b})}+ {b, β({a, b})}, that is, the
line segment ab is sent to the sum am+ bm where m is the midpoint of ab, the barycenter.
We leave to the reader the induction argument that identifies the two descriptions of β∗.

In order that β∗ defines a mapping on homology, we check the condition that ∂ ◦β∗ =
β∗ ◦ ∂. On a 1-simplex, {a, b}, we have that

∂(β∗({a, b})) = ∂({a, β({a, b})}+ {b, β({a, b})}) = a+ b = β∗(a+ b) = β∗(∂({a, b})).

By induction on the dimension of a simplex, we have

∂(β∗(S)) = ∂(iβ(S)(β∗(∂(S)))) = β∗(∂(S)) + iβ(S)(∂β∗(∂(S)))

= β∗(∂(S)) + iβ(S)(β∗(∂∂(S))) = β∗(∂(S)).

Any linear mapping m∗:Cp(K; F2) → Cp(L; F2), defined for all p, that also satisfies
∂ ◦m∗ = m∗ ◦ ∂, is called a chain mapping; furthermore, a chain mapping m∗ induces
a linear mapping m∗:Hp(K; F2) → Hp(L; F2) for all p given by m∗([v]) = [m∗(v)]. We
have showed that β∗ is a chain mapping and so it induces a linear mapping for all p,
β∗:Hp(K; F2) → Hp(sdK; F2).

To finish the proof of the theorem, we show that β∗ and H(λ) are inverses. In one
direction, we show that λ∗ ◦ β∗ = id on Cp(K; F2). On vertices v ∈ K, λ∗(β∗(v)) = v. By
induction on dimension, we check on a p-simplex S = {v0, . . . , vp},

λ∗(β∗(S)) = λ∗(iβ(S)(β∗(∂(S))) = ivp(λ∗(β∗(∂(S)))) = ivp(∂(S)) = S.

The last equation holds because ivp(∂(S)) = S + ∂(ivp(S)), and vp ∈ S implies that
ivp

(S) = 0.
We next construct a chain homotopy h:Cp(sdK; F2) → Cp+1(sdK; F2) that satisfies

∂ ◦ h+ h ◦ ∂ = β∗ ◦ λ∗ + id.

This implies that β∗ ◦ H(λ) = id on Hp(sdK; F2) and establishes that β∗ is the in-
verse of H(λ). For p = 0, define h(β(S)) = {vp, β(S)}, where S = {v0, . . . , vp}. Since
β∗(λ∗(β(S))) = β∗(vp) = vp, we have

∂(h(β(S))) + h(∂(β(S))) = ∂({vp, β(S)}) = vp + β(S) = β∗(λ∗(β(S))) + id(β(S)).

Note also that h(β(S)) = {vp, β(S)} ∈ C1(sd∆p[S]; F2) ⊂ C1(sdK; F2).
Suppose, by induction, that we have defined h:Ck(sdK; F2) → Ck+1(sdK; F2) for

k < p. If {β(S0), . . . , β(Sk)} ∈ Ck(sdK; F2), then let dk = dim(Sk). By induction, also
assume that

h({β(S0), . . . , β(Sk)}) ∈ Ck+1(sd∆dk [Sk]; F2) ⊂ Ck+1(sdK; F2),
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that is, the chains making up the value of h on a simplex in sdK lie in the subdivision
of a particular simplex in K. Suppose T is a p-simplex and T = {β(S0), . . . , β(Sp)} and
dim(Si) = di. Consider the chain in Cp(sdK; F2) given by β∗(λ∗(T )) + T + h(∂(T )). By
induction, we can assume that h(∂(T )) ∈ Cp(sd ∆dp [Sp]; F2) since the image under h of
any (p− 1)-simplex ∂i(T ) in ∂(T ) lies in Cp−1(sd ∆dp [Sp]; F2)⊕ Cp(sd ∆dp−1 [Sp−1]; F2) ⊂
Cp(sd ∆dp [Sp]; F2). Since S0 ≺ S1 ≺ · · · ≺ Sp, we know that T ∈ sd ∆dp [Sp]. Finally,
consider

β∗(λ∗(T )) = β∗({vω(0), . . . , vω(p)}) ∈ Cp(sd∆p[{vω(0), . . . , vω(p)}]; F2)

Since vω(i) lies in Si ≺ Sp, we find β∗(λ∗(T )) ∈ Cp(sd∆dp [Sp]; F2).
Putting these observations together it follows that the p-chain

β∗(λ∗(T )) + T + h(∂(T )) ∈ Cp(sd∆dp [Sp]; F2).

The sequence of chains and boundary homomorphisms for sd ∆dp [Sp] is exact in dimensions
greater than zero because the operator iβ(Sp):Ck(sd ∆dp [Sp]; F2) → Ck+1(sd∆dp [Sp]; F2)
satisfies ∂ ◦ iβ(Sp) + ∂ ◦ iβ(Sp) = id (the proof is the same as for ∆dp [Sp]). Furthermore, by
induction, we can assume that β∗ ◦ λ∗ + id = h ◦ ∂ + ∂ ◦ h on (p− 1)-chains, and so

∂(β∗ ◦ λ∗ + id + h ◦ ∂) = ∂ ◦ β∗ ◦ λ∗ + ∂ + (∂ ◦ h) ◦ ∂
= β∗ ◦ λ∗ ◦ ∂ + ∂ + (β∗ ◦ λ∗ + id + h ◦ ∂) ◦ ∂
= β∗ ◦ λ∗ ◦ ∂ + ∂ + β∗ ◦ λ∗ ◦ ∂ + ∂ + h ◦ ∂ ◦ ∂ = 0.

Thus
β∗(λ∗(T )) + T + h(∂(T )) ∈ Zp(sd∆dp [Sp]) = Bp(sd ∆dp [Sp]).

Therefore, there is a (p+1)-chain cT ∈ Cp+1(sd∆dp [Sp]; F2) ⊂ Cp+1(sdK; F2) with ∂(cT ) =
β∗(λ∗(T )) + T + h(∂(T )). Define h(T ) = cT . Carry out this construction for each T ∈ Kp

and extend linearly to define h:Cp(sdK; F2) → Cp+1(sdK; F2), satisfying β∗ ◦ λ∗ + id =
∂ ◦ h+ h ◦ ∂, and h(T ) ∈ Cp+1(sd∆dp [Sp]; F2).

It now follows from Theorem 11.5 that β∗ ◦ λ∗ induces the identity on Hp(sdK; F2)
and we have proved that Hp(K; F2) ∼= Hp(sdK; F2), for all p. ♦

The trick of restricting and applying the exactness of the sequence of chains and boundary
homomorphisms for a subcomplex of a simplicial complex is known generally as the method
of acyclic models, introduced generally by S. Eilenberg (1913–1998) and J. Zilber in
[Eilenberg-Zilber].

Since |sdK| = |K|, Theorem 11.8 shows that subdivision does not change the homol-
ogy up to isomorphism. The Simplicial Approximation Theorem, together with certain
properties of simplicial mappings, will imply that the collection of homology vector spaces
{Hp(K; F2) | p ≥ 0}, are topological invariants.
Topological invariance of homology. Suppose K and L are simplicial complexes
with |K| and |L| homeomorphic. Then, for all p, the vector spaces Hp(K; F2) and Hp(L; F2)
are isomorphic.
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Proof: Suppose F : |K| → |L| is a homeomorphism with inverse given by G: |L| → |K|.
Let φ: sdNK → L be a simplicial approximation to F and γ: sdML → K a simplicial
approximation to G. Then, we can subdivide the simplicial mapping φ further to ob-
tain sdMφ: sdN+MK → sdML which is also a simplicial approximation to F (Exercise 5,
Chapter 10). The composite

sdN+MK
sdM φ−→ sdML

γ−→K

is a simplicial approximation to the identity mapping |sdN+MK| → |K|. Another approx-
imation of the identity is given by the following composite:

sdN+MK
sdN+M−1λ−→ sdN+M−1K

sdN+M−2λ−→ · · · sd2K
sd λ−→ sdK λ−→K.

The proof of Theorem 11.8 shows that H(λ) is an isomorphism between Hp(sdK; F2) and
Hp(K; F2) for all p. We next show that H(sdjλ) is an isomorphism for all j ≥ 0. More
generally, consider the diagram of simplicial complexes and simplicial mappings:

sdK
sd η−→ sdLyλ

yλK

K −→
η

L

Here we define λK : sdL → L as a simplicial approximation to the identity that satisfies
λK({φ(v0), . . . , φ(vq)}) = φ(vq), that is, we complete the diagram in such a way that
η ◦ λ = λK ◦ sd η. When we apply homology to these mappings, we obtain H(η) ◦H(λ) =
H(λK) ◦H(sd η). Since λ and λK are simplicial approximations of the identity mapping,
they are contiguous and so H(λK) and H(λ) are isomorphisms. Therefore, H(η) and
H(sd η) are equivalent as linear mappings of vector spaces. From this we deduce that
H(sdjλ) is an isomorphism for all j ≥ 0.

Thus γ ◦ sdM φ: sdN+MK → K and λ ◦ (sdλ) ◦ · · · ◦ (sdN+M−1λ): sdN+MK → K are
both simplicial approximations to the identity map |sdN+MK| → |K| and so they are
contiguous by Lemma 10.19. Thus H(γ)◦H(sdMφ) = H(λ)◦H(sdλ)◦ · · · ◦H(sdN+M−1λ)
which is an isomorphism. It follows that H(sdMφ) is one-one and also that H(φ) is one-one
because it is equivalent to H(sdMφ).

By the same argument applied to G ◦ F = id|L|, we form the composite

sdN+ML
sdN γ−→ sdNK

φ−→L

which is a simplicial approximation to id: |sdN+ML| → |L| and so H(φ) ◦ H(sdNγ) is
an isomorphism and so H(φ) is onto. Thus we have proved that H(φ):Hp(sdNK; F2) →
Hp(L; F2) is an isomorphism, for all p. By Theorem 11.8 and induction, Hp(K; F2) is
isomorphic to Hp(sdNK; F2). Thus Hp(K; F2) ∼= Hp(L; F2) for all p. ♦

Corollary 11.9. The Euler-Poincaré characteristic is a topological invariant of a tri-
angulable space.
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Proof: Since χ(K) is calculable from the homology and homology is a topological invariant,
we can write χ(K) = χ(|K|) and compute the Euler-Poincaré characteristic from any
triangulation of |K|. ♦

We can apply the corollary to prove a result known since the time of Euclid. A
Platonic solid is a polyhedron with realization S2 and for which all faces are congruent
to a regular polygon, and each vertex has the same number of edges meeting there. Familiar
examples are the tetrahedron and cube.
Theorem 11.10. There are only five Platonic solids.
Proof: A polyhedron P need not be a simplicial complex, since the faces can be polygons
not necessarily triangles (consider a soccer ball). However, if we subdivide each constituent
polygon into triangles, we get a simplicial complex. The reader can now prove that the
Euler-Poincaré characteristic χ(P ), computed as the alternating sum n0 − n1 + n2 where
P has n0 vertices, n1 edges and n2 faces, is the same for the subdivided polyhedron, a
simplicial complex. Since P has realization S2, we know that χ(P ) = 2.

Suppose each face has M edges (a regular M -gon) and, at each vertex, N faces meet.
This leads to the relation:

M n2/2 = n1,

that is, each of the n2 faces contributes M edges, but each edge is shared by two faces. It
is also the case that

Nn0/2 = n1.

Since N faces meet at each vertex, N edges come into each vertex. But each edge has two
vertices. Putting these relations into Euler’s formula we get

2 = n0 − n1 + n2

= (2n1/N)− n1 + (2n1/M)
= n1((2/N) + (2/M)− 1).

It follows that
n1

2
=

MN

2M + 2N −MN
.

If N = 1 or N = 2, there would be a boundary and so the polyhedron would fail to be
a sphere. Since a Platonic solid encloses space, N > 2. Also M ≥ 3 since each face is a
polygon. Finally, n1 must be an integer which is at least M .

These facts force M < 6. To see this, suppose M ≥ 6 and N > 2. Then 2 − N < 0
and we have

0 < 2M + 2N −MN = 2N +M(2−N) ≤ 2N + 6(2−N) = 12− 4N.

This implies that 4N < 12, or that N < 3, which is impossible for N an integer and N > 2.
Setting M = 3 we get n1 = 6N/(6 − N) which is an integer when N = 3, 4, and 5.

The case N = 3, M = 3 is realized by the tetrahedron; N = 4 and M = 3 is realized by
the octahedron, and for N = 5, M = 3 by the icosahedron.
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For M = 4 we have n1 = 8N/(8− 2N) = 4N/(4−N), and so N = 3 is the only case
of interest which is realized by the cube. Finally, for M = 5 we have n1 = 10N/(10− 3N)
and so N = 3 is the only possible case, which gives the dodecahedron. ♦

Since the homology groups of a triangulable space are defined up to isomorphism, the
invariants of vector spaces, like dimension, are topological invariants of the space. In the
next result, we compare the dimension of one of the homology groups to a topological
invariant introduced in Chapter 5.
Theorem 11.11. If K is a simplicial complex, then dimF2

H0(K; F2) = #π0(|K|) = the
number of path components of |K|.
Proof: Consider the set K0 of vertices of K. Define a relation on K0 given by v ∼ v′ if
there is a 1-chain c ∈ C1(K; F2) with ∂(c) = v + v′. This relation is reflexive, because
∂(0) = v+v; it is symmetric since v+v′ = v′+v; and it is transitive because ∂(c) = v+v′

and ∂(c′) = v′ + v′′ implies ∂(c+ c′) = v + v′ + v′ + v′′ = v + v′′. Let [K0] denote the set
of equivalence classes under this relation. We show that #[K0] = dimF2

H0(K; F2) and
#[K0] = #π0(|K|).

Consider the linear mapping F2[[K0]] → H0(K; F2) determined by [v] 7→ v + B0(K).
Since the equivalence relation is defined by the image of the boundary homomorphism,
this mapping is well-defined. It is onto since every vertex in K lies in some equivalence
class in [K0]. We prove that this mapping is an isomorphism. Suppose that we make a
choice of vertex in each equivalence class so that [K0] = {[v1], . . . , [vs]}. We show that the
set of classes {vi + B0(K) | i = 1, . . . , s} is linearly independent in H0(K; F2). Suppose
vi1 + · · · + vir

+ B0(K) = B0(K), that is, vi1 + · · · + vir
= ∂(c) for some c ∈ C1(K; F2).

We can write c = e1 + · · · + et for edges ei ∈ K1. Since vi1 + · · · + vir
= ∂(e1 + · · · + et)

there is some edge, say e1 with ∂(e1) = vi1 + w1 for some vertex w1. Since vi1 ∼ w1, we
know that w1 6= vij for j = 2, . . . , s. It follows that we can replace vi1 with w1 and write

w1 + vi2 + · · ·+ vir
= ∂(e2 + · · ·+ et).

By the same argument, we can choose e2 with ∂(e2) = w1 +w2. Once again, w1 ∼ w2 and
w2 6= vij for j = 2, . . . , s. Therefore, ∂(e3+· · ·+et) = w2+vi2 +· · ·+vir . Continuing in this
manner, we get down to ∂(et) = wt−1+vi2 + · · ·+vir , which is impossible since the vertices
vij

and wt−1 are not equivalent under the relation. Thus #[K0] = s = dimF2
H0(K; F2).

To finish the proof, we show that #[K0] = #π0(|K|). First notice that the open star
of a vertex, OK(v) is path-connected. This follows because there is a path joining the
vertex v to every point in OK(v). Recall that the set of path components, π0(|K|) is the
set of equivalence classes of points in |K| under the relation that two points are equivalent
if there is a path in |K| joining them. Denote the equivalence classes under this relation by
〈x〉. Suppose [vi] ∈ [K0] is a class of vertices under the relation vi ∼ w if there is a 1-chain
c with ∂(c) = vi + w. Let Ui =

⋃
w∈[vi]

OK(w). We show that Ui is a path component of
|K| and that Ui ∩ Uj = ∅ when i 6= j. Notice that Ui is path connected—we only need
to show that the vertices are joined by paths since each OK(w) is path connected. By
w and w′ satisfy w + w′ = ∂(c) and the 1-chain c determines a path joining w and w′.
Furthermore, if there is a path joining vi to a point x in |K|, then there is a path joining
vi to some vertex v in K, and the path joining vi to v can be deformed to pass only along
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edges of K, whose sum gives a 1-chain c with ∂(c) = vi + v, that is, v ∈ Ui and Ui = 〈vi〉.
Suppose x ∈ Ui ∩ Uj . Then there are vertices w and v with v ∼ vi and w ∼ vj and
x ∈ OK(v) ∩ OK(w). However, this implies that x ∈ ∆m[S] for some m-simplex S in K
for which v, w ∈ S. This implies that e = {v, w} ≺ S is an edge with ∂(e) = v + w and so
v ∼ w which implies vi ∼ vj , a contradiction. Thus |K| is partitioned into disjoint path
components 〈v1〉 = U1, . . . , 〈vs〉 = Us. ♦

We return to the central question of the book.

Invariance of dimension for (m,n): If Rm is homeomorphic to Rn, then n = m.

Proof: We make this a question about simplicial complexes by using the one-point com-
pactification (Definition 6.11). If Rn is homeomorphic to Rm, then their one-point com-
pactifications are homeomorphic. Since Rl ∪ {∞} is homeomorphic to Sl, it follows that
Rn ∼= Rm implies Sn ∼= Sm.

By the topological invariance of homology, and the homeomorphism Sn ∼= |bdy∆n+1|,
we have

Hp(Sn; F2) ∼= Hp(bdy∆n+1; F2) ∼=
{

F2 p = 0, n,
{0} else.

If Sn ∼= Sm, then Hp(Sn; F2) ∼= Hp(Sm; F2) for all p and, by our computation of the
homology of spheres, this is only possible if n = m. ♦

The first proofs of this theorem were due to Brouwer [Brouwer] and Lebesgue [Lebes-
gue]. Brouwer’s proof was based on simplicial approximation and used an index, defined
generically as the cardinality of the preimage of a point, to obtain a contradiction to the
existence of a homeomorphism between [0, 1]n = [0, 1] × · · · × [0, 1] (n times) and [0, 1]m

when n 6= m. Lebesgue’s first proof was not rigorous, but introduced a point-set definition
of dimension that led to the modern development of the subject of dimension theory. An
account of these developments can be found in [Johnson] and [Hurewicz-Wallman].

Another famous theorem of Brouwer can be proved using homology, generalizing the
argument in Theorem 8.7 in which the fundamental group of S1 played a key role.

The Brouwer fixed point theorem. If en = {x ∈ Rn | ‖x‖ ≤ 1} denotes the n-disk
and f : en → en is a continuous mapping, then there is a point x0 ∈ en with f(x0) = x0,
that is, en has the fixed point property.

Proof: Suppose that f : en → en is a continuous mapping without fixed points. If y ∈ en,
then y 6= f(y). Join f(y) to y and continue this ray until it meets Sn−1 = bdy en and
denote this point by g(y). We can characterize g(y) by g(y) = (1− t)f(y)+ ty where t > 0
and ‖g(y)‖ = 1. Because we are in a nicely behaved inner product space, the argument
for the case of n = 2 (Theorem 8.7) carries over exactly to prove that g: en → Sn−1 is
continuous. Furthermore, by the definition of g, g ◦ i:Sn−1 → Sn−1 is the identity when
i:Sn−1 → en is the inclusion of the boundary.

Apply homology to this composite idSn−1 = g◦i to obtain H(idSn−1), an isomorphism,
written as H(g) ◦ H(i). However, Hn−1(Sn−1; F2) 6= {0} while Hn−1(en; F2) = {0}, be-
cause en is homeomorphic to ∆n. Thus, H(i):Hn−1(Sn−1; F2) → Hn−1(en; F2) is the zero
homomorphism [c] 7→ 0. An isomorphism H(idSn−1):Hn−1(Sn−1; F2) → Hn−1(Sn−1; F2)
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cannot be factored as H(g) ◦ ([c] 7→ 0), and so a continuous mapping f : en → en without
fixed points cannot exist. ♦

The Brouwer fixed point theorem was a significant signpost in the development of
topology. The theory of fixed points of mappings plays an important role throughout
mathematics and its applications. With more refined notions of homology, deep general-
izations of the Brouwer fixed point theorem can be proved. See [Munkres2] for examples,
like the Lefschetz-Hopf fixed point theorem.

In dimension two we proved a case of the Borsuk-Ulam theorem (Theorem 8.10)—there
does not exist a continuous function f :S2 → S1 with f(−x) = −f(x) for all x ∈ S2. The
higher dimensional version of the Borsuk-Ulam theorem treats mappings f :Sn → Sn−1

for which f(−x) = −f(x). The general setting for this discussion involves the notion of a
space with involution.
Definition 11.12. A space X has an involution ν:X → X if ν is continuous and
ν◦ν = idX . If (X, ν) and (Y, µ) are spaces with involution, then an equivariant mapping
g:X → Y is a continuous mapping satisfying g ◦ ν = µ ◦ g.
Consider the antipodal mapping on Sn and on Sn−1 given by a(x) = −x. The general
Borsuk-Ulam theorem states that a continuous mapping f :Sn → Sn−1 cannot be equiv-
ariant, that is, f(a(x)) = a(f(x)) does not hold for all x ∈ Sn.

Assuming this formulation of the Borsuk-Ulam theorem, we observe an immediate
consequence: If we let F :Sn → Rn be any continuous mapping that satisfies F (x) 6= F (−x)
for all x ∈ Sn, we can define

g(x) =
F (x)− F (−x)
‖F (x)− F (−x)‖

.

Then g: (Sn, a) → (Sn−1, a) is an equivariant mapping. By the Borsuk-Ulam Theorem, no
such mapping exists, and so there must be a point x0 ∈ Sn with F (x0) = F (−x0), that is,
two antipodal points are mapped to the same point. It follows from this that no subspace
of Rn is homeomorphic to Sn.

We deduce the Borsuk-Ulam theorem as a corollary of a theorem of Walker [Walker]
which deals with the homology of equivariant mappings. Assume that (X, ν) is a space
with involution and that X is triangulable. Then there is a simplicial complex K with
|K| ∼= X and a simplicial mapping ν̄:K → K with |ν̄| ' ν and ν̄ ◦ ν̄ = idK . An argument
for the existence of K and ν̄ can be made using simplicial approximation. For the sphere,
we can do even better. For example, one triangulation of S2 is the octahedron on which we
can write down an explicit simplicial mapping which realizes the antipodal map. Higher
dimensional models of this sort exist for every sphere. Note that the antipodal mapping
on the sphere has no fixed points. We will assume that a simplicial approximation to the
antipodal map can be chosen without fixed points as well, and so any simplex S in L
satisfies ā(S) ∩ S = ∅ where ā:L→ L realizes the antipode on |L| ∼= Sn.
Theorem 11.13. If (X, ν) is a triangulable space with involution and F : (X, ν) → (Sn, a)
is an equivariant mapping, then there is a homology class [c] ∈ Hj(X; F2) with 1 ≤ j ≤ n,
[c] 6= 0 and H(ν)([c]) = [c]. Furthermore, if the least dimension in which this condition
holds is j = n, then the class [c] can be chosen such that H(F )([c]) = [u] 6= 0 in Hn(Sn; F2).
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Proof: Let us assume that we have triangulations for (X, ν) and (Sn, a) denoted by (K, ν̄)
and (L, ā). Let φ:K → L be a simplicial equivariant mapping with φ a simplicial approxi-
mation to F . Let θK = idK∗+ ν̄∗:Cj(K; F2) → Cj(K; F2) and θL = idL∗+ ā∗:Cj(L; F2) →
Cj(L; F2). Since ν̄ and ā are simplicial mappings, θK ◦ ∂ = ∂ ◦ θK and likewise for θL.
Also θK ◦ θK = 0, because

(idK∗ + ν̄∗) ◦ (idK∗ + ν̄∗) = idK∗ + ν̄∗ + ν̄∗ + (ν̄ ◦ ν̄)∗ = 2idK∗ + 2ν̄∗ = 0,

and similarly, θL ◦ θL = 0.
If there is a class 0 6= [c] ∈ Hj(K; F2) with H(ν̄)([c]) = [c] and 0 < j < n, then we are

done. So, let us assume that if H(ν̄)([c]) = [c], then [c] = 0. Notice that H(ν̄)([c]) = [c] if
and only if [θK(c)] = 0.

Let h0 ∈ L denote a vertex. The homology class [h0] = h0 + B0(L) ∈ H0(L; F2)
satisfies [θL(h0)] = 0, since H0(L; F2) has dimension one, and both idL and ā induce the
identity on H0(L; F2). It follows that there is a 1-chain h1 with ∂(h1) = θL(h0). Notice
that

∂(θL(h1)) = θL(∂(h1)) = θL(θL(h0)) = 0.

Since |L| ∼= Sn, B1(L) = Z1(L) and so θL(h1) = ∂(h2) for some h2 ∈ C2(L; F2). It is
also the case that θL(h1) 6= 0. To see this, suppose h1 = e1 + e2 + · · ·+ et. Then we can
number the edges ei with ∂(e1) = h0 + v1, ∂(ei) = vi−1 + vi and ∂(et) = vt−1 + ā∗(h0). If
θL(h1) = 0, then we deduce ā∗(ei) = et−i+1 from which we find either an edge that is its
own antipode, or a pair of edges sharing antipodal vertices. By the assumption that the
antipode ā has no fixed points, we find θL(h1) 6= 0.

We repeat this construction to find hj ∈ Cj(L; F2), for 1 ≤ j ≤ n, with ∂(hj) =
θL(hj−1). By the same argument showing θL(h1) 6= 0, we find θL(hj) 6= 0 for 1 ≤ j ≤ n.
Consider θL(hn); since θL(hn) 6= 0, [θL(hn)] generates Hn(L; F2). The chains hj may be
thought of as generalized hemispheres.

We have assumed that, if 1 ≤ j < n, and [c] ∈ Hj(K; F2) satisfies H(ν̄)[c] = [c], then
[c] = 0. We use this to make an analogous construction of classes cj ∈ Cj(K; F2) with
properties like the hj . Let c0 ∈ K be a vertex. Then [θK(c0)] = 0, and so there is a 1-chain
c1 with ∂(c1) = θK(c0). The 1-chain θK(c1) satisfies

∂(θK(c1)) = θK(∂(c1)) = θK(θK(c0)) = 0.

Thus θK(c1) is a 1-cycle. However, θK(θK(c1)) = 0, so θK(c1) = ∂(c2) for some 2-chain c2.
Continuing in this manner, we find chains cj satisfying ∂(cj) = θK(cj−1) for 1 ≤ j ≤ n.

We next define another sequence of chains on L. We know that h0+φ∗(c0) is a 0-cycle,
and so there is a chain u1 with ∂(u1) = h0 + φ∗(c0). Consider h1 + φ∗(c1) + θL(u1). Then

∂(h1 + φ∗(c1) + θL(u1)) = ∂(h1) + φ∗(∂(c1)) + θL(∂(u1))
= θL(h0) + φ∗(θK(c0)) + θL(h0 + φ∗(c0))
= θL(h0) + θL(φ∗(c0)) + θL(h0) + θL(φ∗(c0)) = 0.

Here we have used θL ◦ φ∗ = φ∗ ◦ θK which holds by the assumption that φ is equiv-
ariant. It follows that there is a 2-chain u2 with ∂(u2) = h1 + φ∗(c1) + θL(u1). The
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analogous computation shows h2 +φ∗(c2)+ θL(u2) is a cycle and so there is a 3-chain with
∂(u3) = h2 +φ∗(c2)+θL(u2). Continuing in this manner, we find j-chains uj with ∂(uj) =
hj−1+φ∗(cj−1)+θL(uj−1) for 1 ≤ j ≤ n (u0 = 0). By construction, hn+φ∗(cn)+θL(un) is
an n-cycle in Cn(L; F2) and so it is homologous to either θL(hn) or to 0 since Hn(L; F2) ∼=
F2[{[θL(hn)]}]. In either case, θL(hn +φ∗(cn)+ θL(un)) = θL(hn)+φ∗(θK(cn)) is homolo-
gous to 0. Let c = θK(cn), then ∂(c) = ∂(θK(cn)) = θK(∂(cn)) = θK(θK(cn−1)) = 0,
and so [c] ∈ Hn(K; F2) satisfies H(φ)([c]) = [φ∗(c)] = [φ∗(θK(cn))] = [θL(hn)] and
[ν̄∗(c)] = [ν̄∗(θK(cn))] = [θK(cn)] = [c], so H(ν)([c]) = [c]. ♦

Corollary 11.14. There are no equivariant mappings F : (Sn, a) → (Sm, a) when n > m.
Proof: The homology of Sn has no nonzero classes in Hj(Sn; F2) for 1 ≤ j ≤ m, and so, if
there were an equivariant mapping F :Sn → Sm, the conclusion of Theorem 11.13 would
fail . ♦

The Borsuk-Ulam theorem is the case m = n − 1. There are many proofs of the
Borsuk-Ulam theorem, as well as remarkable applications in diverse parts of mathematics.
The interested reader should consult [Matoušek] for more details (and a great read).

Exercises

1. Suppose X and Y are triangulable space that are homotopy equivalent. Show that
Hp(X; F2) ∼= Hp(Y ; F2) for all p. The notion of contiguous simplicial mappings (The-
orem 10.21) plays a big role here.

2. Use the homotopy invariance of homology to compute the homology of the Möbius
band.

3. The projective plane, RP2 is modeled by an explicit simplicial complex, as shown in
Chapter 10. The combinatorial data allow one to construct the sequence of boundary
homomorphisms

C2(RP2; F2)
∂−→C1(RP2; F2)

∂−→C0(RP2; F2) → {0}.

This may be boiled down to a pair of matrices whose ranks determine the homology.
Use this formulation to compute Hj(RP2; F2) for all j.

4. If L is a subcomplex of a simplicial complex K, L ⊂ K, then we can define the
homology of the pair (K,L) by setting

Cp(K,L; F2) = Cp(K; F2)/Cp(L; F2).

Show that the boundary operator on the chains on K and L defines a boundary oper-
ator on the quotient vector space Cp(K,L; F2). Then Hp(K,L; F2) is the quotient of
the kernel of the boundary operator by the image of the boundary operator. Compute
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Hp(K,L; F2) for all p when K is a cylinder S1 × [0, 1] and L is its boundary (a pair
of circles), and when K is the Möbius band, and L its boundary.

5. A path through a simplex can be deformed to pass only through the subcomplex of
edges (1-simplices) of the simplex. Because a simplex is convex, this gives a homotopy
between the path and its deformation. Use this idea to define a mapping π1(|K|, v0) →
H1(K; F2) that sends a loop based at a vertex v0 to a 1-chain in K. Show that
the mapping so defined is a group homomorphism. What happens in the case that
|K| ∼= S1?

Where from here?

The diligent reader who has mastered the better part of this book is ready for a great
deal more. I have restricted my attention to particular spaces and particular methods
in order to focus on the question of the topological invariance of dimension. The quick
route to the proof of invariance of dimension left a lot of the landscape unexplored. In
particular, the question of dimension can be posed more generally, for which a rich theory
has been developed. The interested reader can consult [Hurewicz-Wallman] for the classic
treatment, and the articles of Johnson [Johnson], and Dauben [Dauben] for a history of its
development. For topics in the general history of topology, there is the collection of essays
edited by James [James] and the sweeping account of Dieudonné [Dieudonne].

Where to go next is best answered by recommending some texts for which the reader
is now ready.

A far broader treatment of the topics in this book can be found in the books of
Munkres, [Munkres1] and [Munkres2]. Enthusiasts of point-set topology (Chapters 1–6)
will find a rich vein there. Other treatments of point-set topics can be found in [Kahn] and
[Henle], and there is the collection of sometimes surprising counterexamples to sharpen
point-set topological intuition found in [Steen-Seebach].

The fundamental group is thoroughly presented in the classic book of Massey [Massey]
and in the lectures of Lima [Lima]. A deeper exploration of the idea of covering spaces leads
to a topological setting for a Galois correspondence, which has been a fruitful analogy.

For the purposes of ease of exposition toward our main goal, I introduced homology
with coefficients in F2. It is possible to define homology with other coefficients, H∗(X;A)
for A an abelian group, and for arbitrary topological spaces, singular homology, by de-
veloping the properties of simplices with more care. This is the usual place to start a
graduate course in algebraic topology. I recommend [Massey], [Munkres2], [Greenberg-
Harper], [Hatcher], [Spanier] and [Crossley] for these topics. With more subtle chains,
many interesting geometric results can be proved.

The most important examples of topological spaces throughout the history of topology
are manifolds. These are spaces which are locally homeomorphic to open sets in Rn for
which the methods of the Calculus play a principal role. The interface between topology
and analysis is subtle and made clear on manifolds. This is the subject of differential
topology, treated in [Milnor], [Dubrovin-Fomenko-Novikov], and [Madsen-Tornehave].
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I did not treat some of the other classical topological topics in this book about which
the reader may curious. On the subject of knots, the books of Colin Adams [Adams] and
Livingston [Livingston] are good introductions. The problem of classifying all surfaces is
presented in [Massey] and [Armstrong]. Geometric topics, like the Poincaré index theorem,
are a part of classical topology, and can be read about in [Henle].

Finally, the notation π0(X) and π1(X) hints at a sequence of groups, πn(X), known as
the higher homotopy groups of a space X. The iterative definition, introduced by Hurewicz
[Hurewicz], is

πn(X) = πn−1(Ω(X,x0)).

For example, the second homotopy group of X is the fundamental group of the based loop
space on X. The properties of these groups and their computation for particular spaces X
is a difficult problem. Some aspects of this problem are developed in [Croom], [Maunder],
[May], and [Spanier].

To the budding topologist, I wish many exciting discoveries.
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